Mixing state and effective density of aerosol particles during the Beijing 2022 Olympic Winter Games

Author:

Du Aodong,Sun Jiaxing,Liu HangORCID,Xu Weiqi,Zhou WeiORCID,Zhang Yuting,Li LeiORCID,Du Xubing,Li Yan,Pan XiaoleORCID,Wang Zifa,Sun YeleORCID

Abstract

Abstract. Mixing state and density are two key parameters of aerosol particles affecting their impacts on radiative forcing and human health. Here a single-particle aerosol mass spectrometer in tandem with a differential mobility analyzer and an aerodynamic aerosol classifier was deployed during the Beijing 2022 Olympic Winter Games (OWG) to investigate the impacts of emission controls on particle mixing state and density. Our results show the dominance of carbonaceous particles comprising mainly total elemental carbon (Total-EC, 13.4 %), total organic carbon (Total-OC, 10.5 %) and Total-ECOC (47.1 %). Particularly, the particles containing organic carbon and sulfate were enhanced significantly during OWG, although those from primary emissions decreased. The composition of carbonaceous particles also changed significantly which was characterized by the decreases in EC mixed with nitrate and sulfate (EC-NS), EC mixed with potassium nitrate (KEC-N), and amine-containing particles and increase in ECOC mixed with nitrate and sulfate (ECOC-NS). This result indicates that emission controls during OWG reduced the mixing of EC with inorganic aerosol species and amines yet increased the mixing of EC with organic aerosol. The average effective density (ρeff) of aerosol particles (150–300 nm) was 1.15 g cm−3 during the non-Olympic Winter Games (nOWG), with higher values during OWG (1.26 g cm−3) due to the increase in secondary particle contribution. In addition, the ρeff of most particles increased with the increases in pollution levels and relative humidity, yet they varied differently for different types of particles, highlighting the impacts of aging and formation processes on the changes of particle density and mixing state.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3