Gas–particle partitioning of toluene oxidation products: an experimental and modeling study

Author:

Lannuque VictorORCID,D'Anna BarbaraORCID,Kostenidou Evangelia,Couvidat Florian,Martinez-Valiente Alvaro,Eichler Philipp,Wisthaler Armin,Müller Markus,Temime-Roussel Brice,Valorso Richard,Sartelet KarineORCID

Abstract

Abstract. Toluene represents a large fraction of anthropogenic emissions and significantly contributes to tropospheric ozone and secondary organic aerosol (SOA) formation. Despite the fact that toluene is one of the most studied aromatic compounds, detailed chemical mechanisms still fail to correctly reproduce the speciation of toluene gaseous and condensed oxidation products. This study aims to elucidate the role of initial experimental conditions in toluene SOA mass loadings and to investigate gas–particle partitioning of its reaction products at different relevant temperatures. Gaseous and particulate reaction products were identified and quantified using a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) coupled to a CHemical Analysis of aeRosol ONline (CHARON) inlet. The chemical system exhibited a volatility distribution mostly in the semi-volatile regime. Temperature decrease caused a shift of saturation concentration towards lower values. The CHARON–PTR-ToF-MS instrument identified and quantified approximately 60 %–80 % of the total organic mass measured by an aerosol mass spectrometer. A detailed mechanism for toluene gaseous oxidation was developed based on the Master Chemical Mechanism (MCM) and Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) deterministic mechanisms, modified following the literature. The new mechanism showed improvements in modeling oxidation product speciation with more observed species represented and more representative concentrations compared to the MCM–GECKO-A reference. Tests on partitioning processes, nonideality, and wall losses highlighted the high dependency of SOA formation on the considered processes. Our results underline the fact that volatility is not sufficient to explain the gas–particle partitioning: the organic and the aqueous phases need to be considered as well as the interactions between compounds in the particle phase.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3