Ground-based noontime D-region electron density climatology over northern Norway
-
Published:2023-10-04
Issue:19
Volume:23
Page:10823-10834
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Renkwitz ToralfORCID, Sivakandan Mani, Jaen JulianaORCID, Singer Werner
Abstract
Abstract. The bottom part of the Earth's ionosphere is the so-called D region, which is typically less dense than the upper regions. Despite the comparably lower electron density, the ionization state of the D region has a significant influence on signal absorption for propagating lower to medium radio frequencies.
We present local noon climatologies of electron densities in the upper middle atmosphere (50–90 km) at high latitudes as observed by an active radar experiment. The radar measurements cover 9 years (2014–2022) from the solar maximum of cycle 24 to the beginning of cycle 25. Reliable electron densities are derived by employing signal processing, applying interferometry methods, and applying the Faraday-International Reference Ionosphere (FIRI) model. For all years a consistent spring–fall asymmetry of the electron density pattern with a gradual increase during summer as well as a sharp decrease at the beginning of October was found. These findings are consistent with very low frequency (VLF) studies showing equivalent signatures for nearby propagation paths. It is suggested that the meridional circulation associated with downwelling in winter could cause enhanced electron densities through NO transport. However, this mechanism can not explain the reduction in electron density in early October.
Funder
Deutsches Zentrum für Luft- und Raumfahrt Deutsche Forschungsgemeinschaft Bundesministerium für Bildung und Forschung
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference66 articles.
1. Alken, P., Thébault, E., Beggan, C. D., Amit, H., ubert, J., Baerenzung,
J., Bondar, T. N., Brown, W. J., aliff, S., Chambodut, A., Chulliat, A., Cox,
G. A., Finlay, C. C., Fournier, A., Gillet, N., Grayver, A., Hammer, M. D.,
Holschneider, M., Huder, L., Hulot, G., Jager, T., Kloss, C., Korte, M.,
Kuang, W., Kuvshinov, A., Langlais, B., Léger, J.-M., Lesur, V.,
Livermore, P. W., Lowes, F. J., Macmillan, S., Magnes, W., Mandea, M.,
Marsal, S., Matzka, J., Metman, M. C., Minami, T., Morschhauser, A., Mound,
J. E., Nair, M., Nakano, S., Olsen, N., Pavón-Carrasco, F. J., Petrov,
V. G., Ropp, G., Rother, M., Sabaka, T. J., Sanchez, S., Saturnino, D.,
Schnepf, N. R., Shen, X., Stolle, C., Tangborn, A., Tøffner-Clausen, L.,
Toh, H., Torta, J. M., Varner, J., Vervelidou, F., Vigneron, P., Wardinski,
I., Wicht, J., Woods, A., Yang, Y., Zeren, Z., and Zhou, B.: International
Geomagnetic Reference Field: the thirteenth generation, Earth Planet. Space, 73, 49, https://doi.org/10.1186/s40623-020-01288-x, 2021. a 2. Baumann, C., Kero, A., Raizada, S., Rapp, M., Sulzer, M. P., Verronen, P. T., and Vierinen, J.: Arecibo measurements of D-region electron densities during sunset and sunrise: implications for atmospheric composition, Ann. Geophys., 40, 519–530, https://doi.org/10.5194/angeo-40-519-2022, 2022. a, b 3. Belrose, J. S.: Radio wave probing of the ionosphere by the partial reflection
of radio waves (from heights below 100 km), J. Atmos.
Terrest. Phys., 32, 567–596, https://doi.org/10.1016/0021-9169(70)90209-6,
1970. a, b 4. Briggs, B. H.: The analysis of spaced sensor records by correlation techniques,
MAP Handbook, 13, 166–186, 1984. a 5. Budden, K.: Approximations in magnetoionic theory, J. Atmos.
Terrest. Phys., 45, 213–218, https://doi.org/10.1016/S0021-9169(83)80043-9,
1983. a
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|