Biogenic isoprene emissions, dry deposition velocity, and surface ozone concentration during summer droughts, heatwaves, and normal conditions in southwestern Europe

Author:

Guion Antoine,Turquety Solène,Cholakian Arineh,Polcher Jan,Ehret Antoine,Lathière Juliette

Abstract

Abstract. At high concentrations, tropospheric ozone (O3) deteriorates air quality, inducing adverse effects on human and ecosystem health. Meteorological conditions are key to understanding the variability in O3 concentration, especially during extreme weather events. In addition to modifying photochemistry and atmospheric transport, droughts and heatwaves affect the state of vegetation and thus the biosphere–troposphere interactions that control atmospheric chemistry, namely biogenic emissions of precursors and gas dry deposition. A major source of uncertainty and inaccuracy in the simulation of surface O3 during droughts and heatwaves is the poor representation of such interactions. This publication aims at quantifying the isolated and combined impacts of both extremes on biogenic isoprene (C5H8) emissions, O3 dry deposition, and surface O3 in southwestern Europe. First, the sensitivity of biogenic C5H8 emissions, O3 dry deposition, and surface O3 to two specific effects of droughts, the decrease in soil moisture and in biomass, is analysed for the extremely dry summer 2012 using the biogenic emission model MEGANv2.1 and the chemistry transport model CHIMEREv2020r1. Despite a significant decrease in biogenic C5H8 emissions and O3 dry deposition velocity, characterized by a large spatial variability, the combined effect on surface O3 concentration remains limited (between +0.5 % and +3 % over the continent). The variations in simulated biogenic C5H8 emissions, O3 dry deposition, and surface O3 during the heatwaves and agricultural droughts are then analysed for summer 2012 (warm and dry), 2013 (warm), and 2014 (relatively wet and cool). We compare the results with large observational data sets, namely O3 concentrations from Air Quality (AQ) e-Reporting (2000–2016) and total columns of formaldehyde (HCHO, which is used as a proxy for biogenic emissions of volatile organic compounds) from the Ozone Monitoring Instrument (OMI) of the Aura satellite (2005–2016). Based on a cluster approach using the percentile limit anomalies indicator, we find that C5H8 emissions increase by +33 % during heatwaves compared to normal conditions, do not vary significantly during all droughts (either accompanied or not by a heatwave), and decrease by −16 % during isolated droughts. OMI data confirm an average increase in HCHO during heatwaves (between +15 % and +31 % depending on the product used) and decrease in HCHO (between −2 % and −6 %) during isolated droughts over the 2005–2016 summers. Simulated O3 dry deposition velocity decreases by −25 % during heatwaves and −35 % during all droughts. Simulated O3 concentrations increase by +7 % during heatwaves and by +3 % during all droughts. Compared to observations, CHIMERE tends to underestimate the daily maximum O3. However, similar sensitivity to droughts and heatwaves are obtained. The analysis of the AQ e-Reporting data set shows an average increase of +14 % during heatwaves and +7 % during all droughts over the 2000–2016 summers (for an average daily concentration value of 69 µg m−3 under normal conditions). This suggests that identifying the presence of combined heatwaves is fundamental to the study of droughts on surface–atmosphere interactions and O3 concentration.

Funder

Grand Équipement National De Calcul Intensif

Sorbonne Université

Centre National d’Etudes Spatiales

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3