Spectral observations at the Canary Island Long-Baseline Observatory (CILBO): calibration and datasets
-
Published:2023-05-04
Issue:1
Volume:12
Page:91-109
-
ISSN:2193-0864
-
Container-title:Geoscientific Instrumentation, Methods and Data Systems
-
language:en
-
Short-container-title:Geosci. Instrum. Method. Data Syst.
Author:
Zender JoeORCID, Koschny Detlef, Rudawska Regina, Vicinanza Salvatore, Loehle StefanORCID, Eberhart Martin, Meindl Arne, Smit Hans, Marraffa Lionel, Landman RicoORCID, Stam Daphne
Abstract
Abstract. The Canary Island Long-Baseline Observatory (CILBO) is a double-station meteor camera setup located on the Canary Islands operated by ESA's Meteor Research Group since 2010. Observations of meteors are obtained in the visual wavelength band by intensified video cameras from both stations, supplemented by an intensified video camera mounted with a spectral grating at one of the locations.
The cameras observe during cloudless and precipitation-free nights, and data are transferred to a main computer located at ESA/ESTEC once a day. The image frames that contain spectral information are calibrated, corrected, and finally processed into line intensity profiles. An ablation simulation, based on Bayesian statistics using a Markov chain Monte Carlo method, allows determining a parameter space, including the ablation temperatures, chemical elements, and their corresponding line intensities, to fit against the line intensity profiles of the observed meteor spectra.
The algorithm is presented in this paper and one example is discussed. Several hundred spectra have been processed and made available through the Guest Archive Facility of the Planetary Science Archive of ESA. The data format and metadata are explained.
Publisher
Copernicus GmbH
Subject
Atmospheric Science,Geology,Oceanography
Reference59 articles.
1. Abe, S., Ogawa, T., Maeda, K., and Arai, T.: Sodium variation in
Geminid meteoroids from (3200) Phaethon, Planet. Space Sci., 194, 105040,
https://doi.org/10.1016/j.pss.2020.105040, 2020. a, b, c, d, e, f 2. Altwegg, K., Balsiger, H., Hänni, N., Rubin, M., Schuhmann, M.,
Schroeder, I., Sémon, T., Wampfler, S., Berthelier, J.-J.,
Briois, C., Combi, M., Gombosi, T. I., Cottin, H., De Keyser, J.,
Dhooghe, F., Fiethe, B., and Fuselier, S. A.: Evidence of ammonium
salts in comet 67P as explanation for the nitrogen depletion in cometary
comae, Nat. Astro., 4, 533–540, https://doi.org/10.1038/s41550-019-0991-9, 2020. a 3. Appenzeller, I.: Introduction to Astronomical Spectroscopy, Cambridge
University Press, 145–178, ISBN 1139779524, 9781139779524, 2013. a 4. Bardyn, A., Baklouti, D., Cottin, H., Fray, N., Briois, C.,
Paquette, J., Stenzel, O., Engrand, C., Fischer, H., Hornung, K.,
Isnard, R., Langevin, Y., Lehto, H., Le Roy, L., Ligier, N.,
Merouane, S., Modica, P., Orthous-Daunay, F.-R., Rynö, J.,
Schulz, R., Silén, J., Thirkell, L., Varmuza, K., Zaprudin, B.,
Kissel, J., and Hilchenbach, M.: Carbon-rich dust in comet
67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta, Mon. Not. R. Astron. Soc., 469,
S712–S722, https://doi.org/10.1093/mnras/stx2640, 2017. a 5. Benneke, B. and Seager, S.: Atmospheric retrieval for super-earths: Uniquely
constraining the atmospheric composition with transmission spectroscopy,
Astrophys. J., 753, 100, https://doi.org/10.1088/0004-637X/753/2/100, 2012. a
|
|