High-resolution multi-scaling of outdoor human thermal comfort and its intra-urban variability based on machine learning
-
Published:2024-02-26
Issue:4
Volume:17
Page:1667-1688
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Briegel FerdinandORCID, Wehrle Jonas, Schindler DirkORCID, Christen Andreas
Abstract
Abstract. As the frequency and intensity of heatwaves will continue to increase in the future, accurate and high-resolution mapping and forecasting of human outdoor thermal comfort in urban environments are of great importance. This study presents a machine-learning-based outdoor thermal comfort model with a good trade-off between computational cost, complexity, and accuracy compared to common numerical urban climate models. The machine learning approach is basically an emulation of different numerical urban climate models. The final model consists of four submodels that predict air temperature, relative humidity, wind speed, and mean radiant temperature based on meteorological forcing and geospatial data on building forms, land cover, and vegetation. These variables are then combined into a thermal index (universal thermal climate index – UTCI). All four submodel predictions and the final model output are evaluated using street-level measurements from a dense urban sensor network in Freiburg, Germany. The final model has a mean absolute error of 2.3 K. Based on a city-wide simulation for Freiburg, we demonstrate that the model is fast and versatile enough to simulate multiple years at hourly time steps to predict street-level UTCI at 1 m spatial resolution for an entire city. Simulations indicate that neighbourhood-averaged thermal comfort conditions vary widely between neighbourhoods, even if they are attributed to the same local climate zones, for example, due to differences in age and degree of urban vegetation. Simulations also show contrasting differences in the location of hotspots during the day and at night.
Funder
Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz HORIZON EUROPE European Research Council
Publisher
Copernicus GmbH
Reference61 articles.
1. Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-Generation Hyperparameter Optimization Framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2623–2631, https://doi.org/10.1145/3292500.3330701, 2019. 2. Albertson, J. D. and Parlange, M. B.: Natural integration of scalar fluxes from complex terrain, Adv. Water Resour., 23, 239–252, https://doi.org/10.1016/S0309-1708(99)00011-1, 1999a. 3. Albertson, J. D. and Parlange, M. B.: Surface length scales and shear stress: Implications for land-atmosphere interaction over complex terrain, Water Resour. Res., 35, 2121–2132, https://doi.org/10.1029/1999WR900094, 1999b. 4. Ao, X., Grimmond, C. S. B., Ward, H. C., Gabey, A. M., Tan, J., Yang, X.-Q., Liu, D., Zhi, X., Liu, H., and Zhang, N.: Evaluation of the Surface Urban Energy and Water Balance Scheme (SUEWS) at a Dense Urban Site in Shanghai: Sensitivity to Anthropogenic Heat and Irrigation, J. Hydrometeorol., 19, 1983–2005, https://doi.org/10.1175/JHM-D-18-0057.1, 2018. 5. Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B.: Algorithms for Hyper-Parameter Optimization, in: Proceedings of the 24th International Conference on Neural Information Processing Systems, 2546–2554, ISBN 9781618395993, 2011.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|