High-resolution multi-scaling of outdoor human thermal comfort and its intra-urban variability based on machine learning

Author:

Briegel FerdinandORCID,Wehrle Jonas,Schindler DirkORCID,Christen Andreas

Abstract

Abstract. As the frequency and intensity of heatwaves will continue to increase in the future, accurate and high-resolution mapping and forecasting of human outdoor thermal comfort in urban environments are of great importance. This study presents a machine-learning-based outdoor thermal comfort model with a good trade-off between computational cost, complexity, and accuracy compared to common numerical urban climate models. The machine learning approach is basically an emulation of different numerical urban climate models. The final model consists of four submodels that predict air temperature, relative humidity, wind speed, and mean radiant temperature based on meteorological forcing and geospatial data on building forms, land cover, and vegetation. These variables are then combined into a thermal index (universal thermal climate index – UTCI). All four submodel predictions and the final model output are evaluated using street-level measurements from a dense urban sensor network in Freiburg, Germany. The final model has a mean absolute error of 2.3 K. Based on a city-wide simulation for Freiburg, we demonstrate that the model is fast and versatile enough to simulate multiple years at hourly time steps to predict street-level UTCI at 1 m spatial resolution for an entire city. Simulations indicate that neighbourhood-averaged thermal comfort conditions vary widely between neighbourhoods, even if they are attributed to the same local climate zones, for example, due to differences in age and degree of urban vegetation. Simulations also show contrasting differences in the location of hotspots during the day and at night.

Funder

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz

HORIZON EUROPE European Research Council

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3