Cyanobacterial calcification in modern microbialites at the submicrometer scale
-
Published:2013-08-01
Issue:8
Volume:10
Page:5255-5266
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Couradeau E.,Benzerara K.,Gérard E.,Estève I.,Moreira D.,Tavera R.,López-García P.
Abstract
Abstract. The search for microfossils in the geological record has been a long-term challenge. Part of the problem comes from the difficulty of identifying such microfossils unambiguously, since they can be morphologically confused with abiotic biomorphs. One route to improve our ability to correctly identify microfossils involves studying fossilization processes affecting bacteria in modern settings. We studied the initial stages of fossilization of cyanobacterial cells in modern microbialites from Lake Alchichica (Mexico), a Mg-rich hyperalkaline crater lake (pH 8.9) hosting currently growing stromatolites composed of aragonite [CaCO3] and hydromagnesite [Mg5(CO3)4(OH)2 · 4(H2O)]. Most of the biomass associated with the microbialites is composed of cyanobacteria. Scanning electron microscopy analyses coupled with confocal laser scanning microscopy observations were conducted to co-localize cyanobacterial cells and associated minerals. These observations showed that cyanobacterial cells affiliated with the order Pleurocapsales become specifically encrusted within aragonite with an apparent preservation of cell morphology. Encrustation gradients from non-encrusted to totally encrusted cells spanning distances of a few hundred micrometers were observed. Cells exhibiting increased levels of encrustation along this gradient were studied down to the nm scale using a combination of focused ion beam (FIB) milling, transmission electron microscopy (TEM) and scanning transmission x-ray microscopy (STXM) at the C, O and N K-edges. Two different types of aragonite crystals were observed: one type was composed of needle-shaped nano-crystals growing outward from the cell body with a crystallographic orientation perpendicular to the cell wall, and another type was composed of larger crystals that progressively filled the cell interior. Exopolymeric substances (EPS), initially co-localized with the cells, decreased in concentration and dispersed away from the cells while crystal growth occurred. As encrustation developed, EPS progressively disappeared, but remaining EPS showed the same spectroscopic signature. In the most advanced stages of fossilization, only the textural organization of the two types of aragonite recorded the initial cell morphology and spatial distribution.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference80 articles.
1. Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P., and Burch, I. W.: Stromatolite reef from the Early Archaean era of Australia, Nature, 441, 714–718, 2006. 2. Altermann, W.: Precambrian Stromatolites: Problems in definition, classification, morphology and stratigraphy, in: The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology, edited by: Eriksson, P. G., Altermann, W., Nelson, D. R., Mueller, W., and Catuneanu, O., Elsevier, 564–574, 2004. 3. Altermann, W., Kazmierczak, J., Oren, A., and Wright, T.: Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history, Geobiology, 4, 147–166, 2006. 4. Arp, G., Reimer, A., and Reitner, J.: Photosynthesis-Induced Biofilm Calcification and Calcium Concentrations in Phanerozoic Oceans, Science, 292, 1701–1704, 2001. 5. Arp, G., Reimer, A., Reitner, J., and Pratt, B. R.: Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud: Comment and reply – Comment, Geology, 30, 579–580, 2002.
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|