The limited effect of deforestation on stabilized subsoil organic carbon in a subtropical catchment

Author:

Müller Claude RaoulORCID,Six JohanORCID,Brosens LiesaORCID,Baumann PhilippORCID,Minella Jean Paolo Gomes,Govers Gerard,Van de Broek MarijnORCID

Abstract

Abstract. Predicting the quantity of soil organic carbon (SOC) requires understanding how different factors control the amount of SOC. Land use has a major influence on the function of the soil as a carbon sink, as shown by substantial organic carbon (OC) losses from the soil upon deforestation. However, predicting the degree to which land use change affects the OC content in soils and the depth down to which this occurs requires context-specific information related to, for example, climate, geochemistry, and land use history. In this study, 266 samples from forests and agricultural fields were collected from 94 soil profiles down to 300 cm depth in a subtropical region (Arvorezinha, southern Brazil) to study the impact of land use on the amount of stabilized OC along the soil profile. We found that the stabilized OC content was not affected by land use below a depth of 90 cm. Along the soil profile, the amount of stabilized OC was predominantly controlled by land use and depth in addition to the silt and clay content and aluminium ion concentrations. Below 100 cm, none of the soil profiles reached a concentration of stabilized OC above 50 % of the stabilized OC saturation point (i.e. the maximum OC concentration that can physically be stabilized in these soils). Based on these results, we argue that it is unlikely that deeper soil layers can serve as an OC sink over a timescale relevant to global climate change due to the limited OC input in these deeper layers. Furthermore, we found that the soil weathering degree was not a relevant control on the amount of stabilized OC in our profiles because of the high weathering degree of the studied soils. It is therefore suggested that, while the soil weathering degree might be an effective controlling factor of OC stabilization over a large spatial scale, it is not an informative measure for this process at regional and local scales (with similar climate, bedrock, and weathering history) in highly weathered soils.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3