A millennium of arable land use – the long-term impact of tillage and water erosion on landscape-scale carbon dynamics

Author:

Öttl Lena Katharina,Wilken Florian,Juřicová Anna,Batista Pedro V. G.ORCID,Fiener PeterORCID

Abstract

Abstract. In the last decades, soils and their agricultural management have received great scientific and political attention due to their potential to act as a sink of atmospheric carbon dioxide (CO2). Agricultural management has strong potential to accelerate soil redistribution, and, therefore, it is questioned if soil redistribution processes affect this potential CO2 sink function. Most studies analysing the effect of soil redistribution upon soil organic carbon (SOC) dynamics focus on water erosion and analyse only relatively small catchments and relatively short time spans of several years to decades. The aim of this study is to widen this perspective by including tillage erosion as another important driver of soil redistribution and by performing a model-based analysis in a 200 km2 sized arable region of northeastern Germany for the period since the conversion from forest to arable land (approx. 1000 years ago). The spatially explicit soil redistribution and carbon (C) turnover model SPEROS-C was applied to simulate lateral soil and SOC redistribution and SOC turnover. The model parameterisation uncertainty was estimated by simulating different realisations of the development of agricultural management over the past millennium. The results indicate that, in young moraine areas, which are relatively dry but have been intensively used for agriculture for centuries, SOC patterns and dynamics are substantially affected by tillage-induced soil redistribution processes. To understand the landscape-scale effect of these redistribution processes on SOC dynamics, it is essential to account for long-term changes following land conversion as typical soil-erosion-induced processes, e.g. dynamic replacement, only take place after former forest soils reach a new equilibrium following conversion. Overall, it was estimated that, after 1000 years of arable land use, SOC redistribution by tillage and water results in a current-day landscape-scale C sink of up to 0.66 ‰ yr−1 of the current SOC stocks.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3