Abstract
Abstract. Sea surface temperature (SST) reconstructions based on isoprenoid glycerol dialkyl glycerol tetraether (isoGDGT) distributions from the Eocene southwest (sw) Pacific Ocean are unequivocally warmer than can be reconciled with state-of-the-art fully coupled climate models. However, the SST signal preserved in sedimentary archives can be affected by contributions of additional isoGDGT sources. Methods now exist to identify and possibly correct for overprinting effects on the isoGDGT distribution in marine sediments. We here use the current proxy insights to assess the reliability of the isoGDGT-based SST signal in 69 newly analysed and 242 re-analysed sediments ODP Site 1172 (East Tasman Plateau, Australia) following state-of-the-art chromatographic techniques, in context of paleo-environmental and paleoclimatologic reconstructions based on dinoflagellate cysts. The resulting ~130 kyr-resolution Maastrichtian-Oligocene TEX86-based SST record confirms previous conclusions of anomalous warmth in the early Eocene sw Pacific and remarkably cool conditions during the mid-Paleocene. Dinocyst diversity and assemblages show a strong response to the local SST evolution, supporting the robustness of the TEX86 record. Soil-derived branched GDGTs stored in the same sediments are used to reconstruct mean annual air temperature (MAAT) of the nearby land using the MBT'5me proxy. MAAT is consistently lower than SST during the early Eocene, independent of the calibration chosen. General trends in SST and MAAT are similar, except for: 1) an enigmatic absence of MAAT rise during the Paleocene-Eocene Thermal Maximum and Middle Eocene Climatic Optimum, and 2) a subdued middle–late Eocene MAAT cooling relative to SST. Both dinocysts and GDGT signals suggest a mid-shelf depositional environment with strong river-runoff during the Paleocene-early Eocene, progressively becoming more marine thereafter. This trend reflects gradual drying and more pronounced wet/dry seasons in the northward drifting Australian hinterland, which may also explain the subdued middle Eocene MAAT cooling relative to that of SST. The overall correlation between dinocyst assemblages, marine biodiversity and SST changes suggests that temperature exerted a strong influence on the surface-water ecosystem, probably in part through sea level changes caused by steric effects. Finally, we find support for a potential temperature control on compositional changes of branched glycerol monoalkyl glycerol tetraethers (brGMGTs) in marine sediments. It is encouraging that a critical evaluation of the GDGT signals confirms the vast majority of the generated data is reliable. However, this also implies the high TEX86-based SSTs for the Eocene sw Pacific, and the systematic offset between absolute TEX86-based SST and MBT'5me-based MAAT estimates remain unexplained.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
H2020 European Research Council
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献