Sensitivity of PM<sub>2.5</sub> to climate in the Eastern US: a modeling case study
-
Published:2007-08-22
Issue:16
Volume:7
Page:4295-4309
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Dawson J. P.,Adams P. J.,Pandis S. N.
Abstract
Abstract. The individual effects of various meteorological parameters on PM2.5 concentrations in the Eastern US are examined using the PMCAMx chemical transport model so that these effects and their relative magnitudes can be better understood. A suite of perturbations in temperature, wind speed, absolute humidity, mixing height, cloud cover, and precipitation are imposed individually on base case conditions corresponding to periods in July 2001 and January 2002 in order to determine the sensitivities of PM2.5 concentrations and composition to these separate meteorological parameters. Temperature had a major effect on average PM2.5 in January (−170 ng m−3 K−1) due largely to the evaporation of ammonium nitrate and organic aerosol at higher temperatures; increases in sulfate production with increased temperature counteracted much of this decrease in July. Changes in mixing height also had major effects on PM2.5 concentrations: 73 ng m−3 (100 m)−1 in January and 210 ng m−3 (100 m)−1 in July. Changes in wind speed (30 to 55 ng m−3 %−1) and absolute humidity (15 to 20 ng m−3 %−1) also had appreciable effects on average PM2.5 concentrations. Precipitation changes had large impacts on parts of the domain (a consequence of the base case meteorology), with sensitivities to changing area of precipitation in July up to 100 ng m−3 %−1. Perturbations in cloud cover had the smallest effects on average PM2.5 concentrations. The changes in PM2.5 concentrations resulting from changing all eight meteorological parameters simultaneously were approximately within 25% or so of the sum of the changes to the eight individual perturbations. The sensitivities of PM2.5 concentrations to changes in these meteorological parameters indicate that changes in climate could potentially have important impacts on PM2.5 concentrations.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference44 articles.
1. Aw, J. and Kleeman, M. J.: Evaluating the first-order effect of intraannual temperature variability on urban air pollution, J. Geophys. Res., 108, 4365, https://doi.org/ 10.1029/2002JD002688, 2003. 2. Baertsch-Ritter, N., Keller, J., Dommen, J., and Prevot, A. S. H.: Effects of various meteorological conditions and spatial emission resolutions on the ozone concentration and ROG/NOx limitation in the Milan area (I), Atmos. Chem. Phys., 4, 423–438, 2004.. 3. Bernard, S. M., Samet, J. M., Grambsch, A., Ebi, K. L., and Romieu, I.: The potential impact of climate variability and change on air pollution-related health effects in the United States, Environ. Health Perspect., 109, Suplm. 2, 199–209, 2001. 4. Bogardi, I. and Matyasovszky, I.: Estimating daily wind speed under climate change, Sol. Energy, 57, 239–248, 1996. 5. Brasseur, G. P., Kiehl, J. T., Müller, J.-F., Schneider, T., Granier, C., Tie, X., and Hauglustaine, D.: Past and future changes in global tropospheric ozone: Impact on radiative forcing, Geophys. Res. Lett., 25, 3807–3810, 1998.
Cited by
271 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|