Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 CE
-
Published:2020-11-16
Issue:11
Volume:14
Page:4039-4061
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Verhaegen Yoni, Huybrechts PhilippeORCID, Rybak OlegORCID, Popovnin Victor V.
Abstract
Abstract. We use a numerical flow line model to simulate the
behaviour of the Djankuat Glacier, a World Glacier Monitoring Service reference glacier situated in the
North Caucasus (Republic of Kabardino-Balkaria, Russian Federation), in
response to past, present and future climate conditions (1752–2100 CE).
The model consists of a coupled ice flow–mass balance model that also
takes into account the evolution of a supraglacial debris cover. After
simulation of the past retreat by applying a dynamic calibration procedure,
the model was forced with data for the future period under different
scenarios regarding temperature, precipitation and debris input. The main
results show that the glacier length and surface area have decreased by ca.
1.4 km (ca. −29.5 %) and ca. 1.6 km2 (−35.2 %)
respectively between the initial state in 1752 CE and present-day
conditions. Some minor stabilization and/or readvancements of the glacier
have occurred, but the general trend shows an almost continuous retreat
since the 1850s. Future projections using CMIP5 temperature and
precipitation data exhibit a further decline of the glacier. Under constant
present-day climate conditions, its length and surface area will further
shrink by ca. 30 % by 2100 CE. However, even under the most extreme RCP 8.5 scenario, the glacier will not have disappeared completely by the end of the modelling period. The presence of an increasingly widespread
supraglacial debris cover is shown to significantly delay glacier retreat,
depending on the interaction between the prevailing climatic conditions, the
debris input location, the debris mass flux magnitude and the time of
release of debris sources from the surrounding topography.
Funder
Russian Foundation for Basic Research
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference95 articles.
1. Ahouissoussi, N., Neumann, J. E., Srivastava, J. P., Okan, C., and Droogers,
P. (Eds.): Reducing the vulnerability of Georgia's agricultural systems to
climate change: impact assessment and adaptation options, World Bank
Publications, Georgia, 116 pp., 2014. 2. Akkemik, Ü, Dagdeviren, N., and Aras, A.: A preliminary reconstruction
(A.D. 1635–2000) of spring precipitation using oak tree rings in the
western Black Sea region of Turkey, Int. J. Biometeorol., 49, 297–302,
https://doi.org/10.1007/s00484--004--0249--8, 2005. 3. Akkemik, Ü. and Aras, A.: Reconstruction (1689–1994 AD) of
April–August precipitation in the southern part of central Turkey, Int. J.
Climatol., 25, 537–548, https://doi.org/10.1002/joc.1145, 2005. 4. Alder, J. R. and Hostetler, S. W.: An interactive web application for
visualizing climate data, Eos Trans. AGU, 94, 197–198, https://doi.org/10.1002/2013EO220001, 2013. 5. Aleynikov, A. A., Zolotarev, E. A., and Popovnin, V. V.: The velocity field
of Djankuat Glacier, Data of Glaciological
Studies, 87, 169–176, 1999 (in Russian).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|