Author:
Potirakis S. M.,Minadakis G.,Nomicos C.,Eftaxias K.
Abstract
Abstract. Many questions about earthquake (EQ) generation remain standing. Fracture induced electromagnetic (EM) fields allow real-time monitoring of damage evolution in materials during mechanical loading. An improved understanding of the EM precursors has direct implications for the study of EQ generation processes. An important challenge in this direction is to identify an observed anomaly in a recorded EM time series as a pre-seismic one and correspond this to a distinct stage of EQ generation. In previous papers (Kapiris et al., 2004; Contoyiannis et al., 2005; Papadimitriou et al., 2008), we have shown that the last kHz part of the emerged precursory EM activity is rooted in the fracture of the backbone of asperities distributed along the activated fault, sustaining the system. The crucial character of this suggestion requires further support. In this work we focus on this effort. Tools of information theory (Fisher Information) and concepts of entropy (Shannon and Tsallis entropies) are employed. The analysis indicates that the launch of the EM precursor is combined with the appearance of a significantly higher level of organization, which is an imprint of a corresponding higher level of organization of the local seismicity preceding the EQ occurrence. We argue that the temporal evolution of the detected EM precursor is in harmony with the Intermittent Criticality approach of fracture by means of energy release, correlation length, Hurst exponent and a power-law exponent obtained from frequency-size distributions of seismic/electromagnetic avalanche events. The candidate precursory EM activity is also consistent with other precursors from other disciplines. Thus, accumulated evidence, including laboratory experiments, strengthen the consideration that the emergence of the kHz EM precursor is sourced in the fracture of asperities indicating that EQ occurrence is expected.
Subject
General Earth and Planetary Sciences
Reference118 articles.
1. Abe, S. and Okamoto, Y.: Nonextensive Statistical Mechanics and its Applications, Springer-Verlag, Heidelberg, 2001.
2. Abe, S., Herrmann, H., Quarati, P., Rapisarda, A., and Tsallis, C.: Complexity metastability, and nonextensivity, in: AIP Conference Proceedings, 95, 2007.
3. Al-Kindy, F. H. and Main, I. G: Testing self-organized criticality in the crust using entropy: A regionalized study of the CMT global earthquake catalogue, J. Geophys. Res., 108, 2521, https://doi.org/10.1029/2002JB002230, 2003.
4. Bahat, D., Rabinovitch, A., and Frid, V.: Tensile Fracturing in Rocks. Tectonofractographic and Electromagnetic Radiations Methods, Springer, Heidelberg, 2005.
5. Bak, P. and Tang, C.: Earthquakes as a Self-Organized Critical Phenomenon, J. Geophys. Res., 94, 15635–15637, 1989.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献