Estimating insured residential losses from large flood scenarios on the Tone River, Japan – a data integration approach

Author:

Okada T.,McAneney K. J.,Chen K.

Abstract

Abstract. Flooding on the Tone River, which drains the largest catchment area in Japan and is now home to 12 million people, poses significant risk to the Greater Tokyo Area. In April 2010, an expert panel in Japan, the Central Disaster Prevention Council, examined the potential for large-scale flooding and outlined possible mitigation measures in the Greater Tokyo Area. One of the scenarios considered closely mimics the pattern of flooding that occurred with the passage of Typhoon Kathleen in 1947 and would potentially flood some 680 000 households above floor level. Building upon that report, this study presents a Geographical Information System (GIS)-based data integration approach to estimate the insurance losses for residential buildings and contents as just one component of the potential financial cost. Using a range of publicly available data – census information, location reference data, insurance market information and flood water elevation data – this analysis finds that insurance losses for residential property alone could reach approximately 1 trillion JPY (US$ 12.5 billion). Total insurance losses, including commercial and industrial lines of business, are likely to be at least double this figure with total economic costs being much greater again. The results are sensitive to the flood scenario assumed, position of levee failures, local flood depths and extents, population and building heights. The Average Recurrence Interval (ARI) of the rainfall following Typhoon Kathleen has been estimated to be on the order of 200 yr; however, at this juncture it is not possible to put an ARI on the modelled loss since we cannot know the relative or joint probability of the different flooding scenarios. It is possible that more than one of these scenarios could occur simultaneously or that levee failure at one point might lower water levels downstream and avoid a failure at all other points. In addition to insurance applications, spatial analyses like that presented here have implications for emergency management, the cost-benefit of mitigation efforts and land-use planning.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference30 articles.

1. Bouwer, L. M.: Have disaster losses increased due to anthropogenic climate change?, B. Am. Meteorol. Soc., January, 39–46, 2011.

2. Cabinet Office, Government of Japan: Report on 1947 Typhoon Kathleen, available at: http://www.bousai.go.jp/jishin/chubou/kyoukun/rep/1947-kathleenTYPHOON/ (last access: 10 May 2011), 2006.

3. Central Disaster Prevention Council, Cabinet Office, Government of Japan: The expert panel report on the countermeasures against large-scale flood disaster, available at: http://www.bousai.go.jp/jishin/chubou/suigai/100402/100402_shiryo_2.pdf (last access: 11 May 2011), 2010.

4. Crompton, R. P. and McAneney, K. J.: Normalised Australian insured losses from meteorological hazards: 1967–2006, Environ. Sci. Policy, 11, 371–378, 2008.

5. Downton, M. W. and Pielke Jr., R. A.: How Accurate are Disaster Loss Data? The Case of U.S. Flood Damage, Nat. Hazards, 35, 211–228, https://doi.org/10.1007/s11069-004-4808-4, 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3