Prediction of the date, magnitude and affected area of impending strong earthquakes using integration of multi precursors earthquake parameters

Author:

Saradjian M. R.,Akhoondzadeh M.

Abstract

Abstract. Usually a precursor alone might not be useful as an accurate, precise, and stand-alone criteria for the earthquake parameters prediction. Therefore it is more appropriate to exploit parameters extracted from a variety of individual precursors so that their simultaneous integration would reduce the parameters's uncertainty. In our previous studies, five strong earthquakes which happened in the Samoa Islands, Sichuan (China), L'Aquila (Italy), Borujerd (Iran) and Zarand (Iran) have been analyzed to locate unusual variations in the time series of the different earthquake precursors. In this study, we have attempted to estimate earthquake parameters using the detected anomalies in the mentioned case studies. Using remote sensing observations, this study examines variations of electron and ion density, electron temperature, total electron content (TEC), electric and magnetic fields and land surface temperature (LST) several days before the studied earthquakes. Regarding the ionospheric precursors, the geomagnetic indices Dst and Kp were used to distinguish pre-earthquake disturbed states from the other anomalies related to the geomagnetic activities. The inter-quartile range of data was utilized to construct their upper and lower bound to detect disturbed states outsides the bounds which might be associated with impending earthquakes. When the disturbed state associated with an impending earthquake is detected, based on the type of precursor, the number of days relative to the earthquake day is estimated. Then regarding the deviation value of the precursor from the undisturbed state the magnitude of the impending earthquake is estimated. The radius of the affected area is calculated using the estimated magnitude and Dobrovolsky formula. In order to assess final earthquake parameters (i.e. date, magnitude and radius of the affected area) for each case study, the earthquake parameters obtained from different earthquake precursors were integrated. In other words, for each case study using the median and inter-quartile range of earthquake parameters, the bounds of the final earthquake parameters were defined. For each studied case, a close agreement was found between the estimated and registered earthquake parameters.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3