Observation of two distinct cold, dense ion populations at geosynchronous orbit: local time asymmetry, solar wind dependence and origin

Author:

Lavraud B.,Thomsen M. F.,Wing S.,Fujimoto M.,Denton M. H.,Borovsky J. E.,Aasnes A.,Seki K.,Weygand J. M.

Abstract

Abstract. We report on the observation of two distinct cold (Ti<5 keV), dense (Ni>2 cm−3) ion populations at geosynchronous orbit. A statistical study was performed on measurements from the geosynchronous Los Alamos plasma instruments, for the period 1990–2004, and complemented by corresponding large-scale plasma sheet data obtained by mapping DMSP observations in the tail. The first population, which has previously been reported in several studies, is observed in the midnight region of geosynchronous orbit. The second population, which has drawn less attention, is detected on the dawn side of geosynchronous orbit. No such cold, dense population is observed on the dusk side of geosynchronous orbit on a frequent basis. The temporal evolution of various plasma parameters as a function of local time shows that the two populations appear at geosynchronous orbit as distinct populations, since the appearance of a midnight population is not usually associated with that of a dawn population, and vice versa. The midnight ion population is typically observed after the IMF has been northward for some time and is convected inward toward geosynchronous orbit after an observed mild southward turning of the average IMF. It is interpreted that the source of the midnight population is the cold, dense plasma sheet (CDPS). The dawn-side cold and dense ion population is associated with previously strong southward IMF and consequently occurs during substantial geomagnetic activity. These events are typically observed around the end of the main phase of the corresponding Dst decrease, down to −50 nT on average. It is unlikely that this dawn population is simply the low-latitude boundary layer (LLBL) moving closer to Earth because (1) no symmetric dusk population is observed and (2) on average a small sunward flow (~15 km/s) is observed for those events. The cold, dense population at dawn is thus observed during active times (based on Dst, Kp and AE indices) in comparison with the midnight case. However, since the dawn population is observed only around the end of the main Dst decrease, it is concluded that this population does not typically contribute to the Dst decrease during the main phase. This population may rather be transported to geosynchronous orbit by means of a compression and convection enhancement in the magnetosphere, with a preferential access from the dawn flank with no apparent counterpart at dusk. DMSP data suggest that a cold and dense plasma source is mainly present at dawn.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference46 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3