First observations of SPEAR-induced artificial backscatter from CUTLASS and the EISCAT Svalbard radars

Author:

Robinson T. R.,Yeoman T. K.,Dhillon R. S.,Lester M.,Thomas E. C.,Thornhill J. D.,Wright D. M.,van Eyken A. P.,McCrea I. W.

Abstract

Abstract. Results are presented from the first two active experimental campaigns undertaken by the new SPEAR (Space Plasma Exploration by Active Radar) high-power system that has recently become operational on Spitzbergen, in the Svalbard archipelago. SPEAR's high-power beam was used to excite artificial enhancements in the backscatter detected by the ESR (EISCAT Svalbard Radar) parallel to the geomagnetic field, as well as coherent backscatter detected by both of the CUTLASS (Co-operative UK Twin Located Auroral Sounding System) coherent radars, in directions orthogonal to the geomagnetic field. The ESR detected both enhanced ion-lines as well as enhanced plasma-lines, that were sustained for the whole period when SPEAR was transmitting ordinary mode radio waves, at frequencies below the maximum F-region plasma frequency. On a number of occasions, coherent backscatter was also observed in one or in both of the CUTLASS radars, in beams that intersected the heated volume. Although the levels of enhanced backscatter varied considerably in time, it appeared that ion-line, plasma-line and coherent backscatter were all excited simultaneously, in contrast to what has typically been reported at Tromsø, during EISCAT heater operations. A description of the technical and operational aspects of the new SPEAR system is also included.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Joint Cluster/Ground‐Based Studies in the First 20 Years of the Cluster Mission;Journal of Geophysical Research: Space Physics;2022-08

2. History of the Tromsø ionosphere heating facility;History of Geo- and Space Sciences;2022-04-22

3. Comparison of interferometer calibration techniques for improved SuperDARN elevation angles;Polar Science;2021-06

4. ISTP SB RAS decameter radars;Solar-Terrestrial Physics;2020-06-27

5. ISTP SB RAS decameter radars;Solnechno-Zemnaya Fizika;2020-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3