Analysis of wind data in the low atmosphere from a RASS sodar

Author:

Pérez I. A.,García M. A.,Sánchez M. L.,de Torre B.

Abstract

Abstract. This paper focuses on the ability of a sodar to describe some characteristics of the atmospheric vertical structure and presents some techniques for meteorological data evaluation. The measuring campaign took place in April 2001 and consisted of 10-min averages covering the lower atmosphere from 40 to 500 m at 20-m levels. Three methods were considered, the first of which was a scalar analysis performed using a combination of wind and temperature median profiles. A noticeable contrast between day and night was obtained. Flat wind profiles during the day were a consequence of prevailing convective conditions that determined thermal turbulence. A stable layer above 260 m capped the unstable layer situated below and guaranteed the stability of the boundary layer. During the night, the presence of a low level jet was the most significant feature. The height of the core was 340 m and the higher vertical winds defined it clearly. The second method focused on the wind vector. In this analysis, the anti-cyclonic rotation of hourly averages was considered in the lower levels where it was observed. After a translation of the origin, an empirical, robust model with two parts was then proposed for the resulting vector. The angle was described linearly and the module by a second order model for cylindrical data. Finally, as a third method, three regression analyses were investigated: vectorial, taking every wind component separately and scalar. The two first seemed to be more complete due to their description of anti-cyclonic wind rotation when height increased. Correlation coefficients also proved to be more satisfactory. As a consequence, these techniques, although less frequently used, are more suitable to study wind in the low atmosphere.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3