Reconnection and energetic particles at the edge of the exterior cusp

Author:

Asikainen T.,Mursula K.

Abstract

Abstract. In this paper we study flux transfer events (FTE) observed at the post-noon edge of the exterior cusp region by Cluster satellites. During the outbound dayside orbit on 2 February 2003, intense bursts of energetic particles were observed in close conjuction with magnetic field FTE signatures by the RAPID instrument onboard the Cluster 4. The pitch-angle distribution of the particles showed that the enhancements consist of particles flowing antiparallel to the magnetosheath field lines away from the expected reconnection site to the exterior cusp. At the same time Cluster 3 observed enhancements of energetic particles deeper in the exterior cusp with a delay of about 40 s to the Cluster 4 enhancements. The estimated maximum energy gain per particle by reconnection remains below 1 keV, thus clearly below the tens to hundreds of keV energy range observed by the RAPID instrument. These observations support the earlier statistical result of the magnetospheric origin of energetic particles in the exterior cusp. Reconnection near the exterior cusp partly releases the particles in the closed field lines of the adjacent HLPS region into the exterior cusp.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interplanetary energetic electrons observed in Earth’s polar cusp/cap/lobes;Reviews of Modern Plasma Physics;2022-05-25

2. The Polar Cusp Seen by Cluster;Journal of Geophysical Research: Space Physics;2021-09

3. Solar Energetic Electrons Entering the Earth’s Cusp/Lobe;The Astrophysical Journal;2021-03-01

4. On the origin of high-energy particles in the cusp diamagnetic cavity;Journal of Atmospheric and Solar-Terrestrial Physics;2012-10

5. Investigating the relationship between cusp energetic particle events and cusp diamagnetic cavities;Journal of Atmospheric and Solar-Terrestrial Physics;2012-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3