Long-distance propagation of 162 MHz shipping information links associated with sporadic E

Author:

Chartier Alex T.ORCID,Hanley Thomas R.,Emmons Daniel J.

Abstract

Abstract. Sporadic E layers form in the daytime midlatitude ionosphere as a result of wind shears in the mesosphere–lower-thermosphere compressing metallic ions of meteoric origin into dense, narrow sheets extending over hundreds or thousands of kilometers spatially. These layers are poorly observed, being too narrow to be properly resolved by incoherent scatter radar or path-integrated total electron content measurements. Sporadic E layer peak densities can be resolved by ionosondes and by rocket-borne Langmuir probes, but these techniques have major limitations in terms of spatial and temporal coverage, and (for many ionosondes) maximum density resolution. As a result, the density, occurrence, and spatial extent of sporadic E layers are not well constrained by observations. The maximum density of sporadic E is widely believed to be around 5–10×1011 electrons m−3 NmEs (equivalent to 6–9 MHz foEs), though there are a few isolated reports of layers extending beyond 20 MHz (Chandra and Rastogi, 1975; Maeda and Heki, 2014). Here, we identify sporadic E layers using a huge database of 29 million 162 MHz automatic identification system (AIS) shipping transmissions collected over 3 d by a United States Coast Guard (USCG) terrestrial monitoring network in the eastern United States and Puerto Rico. Within this dataset, most (>99 %) links are explained by line-of-sight, surface-wave, and tropospheric propagation, but a small population cannot be explained by these mechanisms. In total, 6677 signals were identified from ships located over 1000 km from the ground stations between 13 and 14 July 2021, and almost no long-distance links were received at night or at any time on 15 July. This coincides with intense (saturated) sporadic E in collocated ionosondes and in satellite radio occultation data. The density of these layers might exceed 27 MHz foEs or 9×1012 electrons m−3 NmEs. AIS transmissions potentially provide an excellent means of identifying dense sporadic E layers globally.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3