TUNER-compliant error estimation for MIPAS: methodology
-
Published:2022-12-06
Issue:23
Volume:15
Page:6991-7018
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
von Clarmann Thomas, Glatthor Norbert, Grabowski Udo, Funke BerndORCID, Kiefer Michael, Kleinert AnneORCID, Stiller Gabriele P.ORCID, Linden Andrea, Kellmann Sylvia
Abstract
Abstract. This paper describes the error estimation for temperature and trace gas
mixing ratios retrieved from the Michelson Interferometer for Passive
Atmospheric Sounding (MIPAS) limb emission spectra. The following error
sources are taken into account: measurement noise, propagated temperature
and pointing noise, uncertainties in the abundances of spectrally interfering species, instrument line shape errors, and spectroscopic data uncertainties in terms of line intensities and broadening coefficients. Furthermore, both the direct impact of volatile and persistent gain calibration uncertainties, offset calibration, and spectral calibration uncertainties, as well as their impact through propagated calibration-related temperature and pointing uncertainties, are considered. An error source specific to the MIPAS upper atmospheric observation mode is the propagation of the smoothing error crosstalk of the combined NO and temperature retrieval. Whenever non-local thermodynamic equilibrium modelling is used in the retrieval, related kinetic constants and mixing ratios of species involved in the modelling of populations of excitational states also contribute to the error budget. Both generalized Gaussian error propagation and perturbation studies are used to estimate the error components. Error correlations are taken into account. Estimated uncertainties are provided for a multitude of atmospheric conditions. Some error sources were found to contribute both to the random and the systematic component of the total estimated error. The sequential nature of the MIPAS retrievals gives rise to entangled errors. These are caused by error sources that affect the uncertainty in the final data product via multiple pathways, i.e., on the one hand, directly, and, on the other hand, via errors caused in a preceding retrieval step. These errors tend to partly compensate for each other. The hard-to-quantify effect of the horizontally non-homogeneous atmosphere and unknown error correlations of spectroscopic data are considered to be the major limitations of the MIPAS error estimation.
Funder
Agencia Estatal de Investigación
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference29 articles.
1. Bermejo-Pantaleón, D., Funke, B., López-Puertas, M.,
García-Comas, M., Stiller, G. P., von Clarmann, T., Linden, A.,
Grabowski, U., Höpfner, M., Kiefer, M., Glatthor, N., Kellmann, S., and
Lu, G.: Global Observations of Thermospheric Temperature and Nitric Oxide
from MIPAS spectra at 5.3 µm, J. Geophys. Res., 116, A10313,
https://doi.org/10.1029/2011JA016752, 2011. a, b 2. Eckert, E., Laeng, A., Lossow, S., Kellmann, S., Stiller, G., von Clarmann, T., Glatthor, N., Höpfner, M., Kiefer, M., Oelhaf, H., Orphal, J., Funke, B., Grabowski, U., Haenel, F., Linden, A., Wetzel, G., Woiwode, W., Bernath, P. F., Boone, C., Dutton, G. S., Elkins, J. W., Engel, A., Gille, J. C., Kolonjari, F., Sugita, T., Toon, G. C., and Walker, K. A.: MIPAS IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) measurements: accuracy, precision and long-term stability, Atmos. Meas. Tech., 9, 3355–3389, https://doi.org/10.5194/amt-9-3355-2016, 2016. a 3. Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clarmann, T., Delbouille, L., Dudhia, A., Ehhalt, D., Endemann, M., Flaud, J. M., Gessner, R., Kleinert, A., Koopman, R., Langen, J., López-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G., Remedios, J., Ridolfi, M., Stiller, G., and Zander, R.: MIPAS: an instrument for atmospheric and climate research, Atmos. Chem. Phys., 8, 2151–2188, https://doi.org/10.5194/acp-8-2151-2008, 2008. a 4. Funke, B., López-Puertas, M., Stiller, G. P., von Clarmann, T., and
Höpfner, M.: A new non–LTE Retrieval Method for Atmospheric Parameters
From MIPAS–ENVISAT Emission Spectra, Adv. Space Res., 27, 1099–1104,
2001. a 5. Funke, B., López-Puertas, M., García-Comas, M., Kaufmann, M.,
Höpfner, M., and Stiller, G. P.: GRANADA: A Generic RAdiative
traNsfer AnD non-LTE population algorithm, J. Quant. Spectrosc.
Ra. Trans., 113, 1771–1817, https://doi.org/10.1016/j.jqsrt.2012.05.001, 2012. a
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|