Intercomparison of Sentinel-5P TROPOMI cloud products for tropospheric trace gas retrievals
-
Published:2022-11-01
Issue:21
Volume:15
Page:6257-6283
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Latsch Miriam, Richter AndreasORCID, Eskes HenkORCID, Sneep MaartenORCID, Wang Ping, Veefkind PepijnORCID, Lutz Ronny, Loyola DiegoORCID, Argyrouli AthinaORCID, Valks Pieter, Wagner Thomas, Sihler Holger, van Roozendael Michel, Theys Nicolas, Yu Huan, Siddans Richard, Burrows John P.ORCID
Abstract
Abstract. Clouds have a strong impact on satellite measurements of
tropospheric trace gases in the ultraviolet, visible, and near-infrared
spectral ranges from space. Therefore, trace gas retrievals rely on
information on cloud fraction, cloud albedo, and cloud height from cloud
products. In this study, the cloud parameters from different cloud retrieval
algorithms for the Sentinel-5 Precursor (S5P) TROPOspheric Monitoring Instrument (TROPOMI) are compared: the Optical Cloud
Recognition Algorithm (OCRA) a
priori cloud fraction, the Retrieval Of Cloud Information using
Neural Networks (ROCINN) CAL (Clouds-As-Layers) cloud fraction and cloud top and base
height, the ROCINN CRB (Clouds-as-Reflecting-Boundaries) cloud fraction and cloud height, the Fast Retrieval Scheme for Clouds from the Oxygen A-band (FRESCO) cloud
fraction, the interpolated FRESCO cloud height from the TROPOMI NO2
product, the cloud fraction from the NO2 fitting window, the O2–O2
cloud fraction and cloud height, the Mainz Iterative Cloud Retrieval
Utilities (MICRU) cloud fraction, and the Visible Infrared Imaging Radiometer Suite (VIIRS)
cloud fraction. Two different versions of the TROPOMI cloud products
OCRA/ROCINN, FRESCO, and the TROPOMI NO2 product are included in the
comparisons (processor version 1.x and 2.x). Overall, the cloud parameters
retrieved by the different algorithms show qualitative consistency in
version 1.x and good agreement in version 2.x with the exception of the
VIIRS cloud fraction, which cannot be directly compared to the other data.
Differences between the cloud retrievals are found especially for small
cloud heights with a cloud fraction threshold of 0.2, i.e. clouds that are
particularly relevant for tropospheric trace gas retrievals. The cloud
fractions of the different version 2 cloud products primarily differ over
snow- and ice-covered pixels and scenes with sun glint, for which only MICRU
includes an explicit treatment. All cloud parameters show some systematic
problems related to the across-track dependence, where larger values are
found at the edges of the satellite view. The consistency between the cloud
parameters from different algorithms depends strongly on how the data are
filtered for the comparison, for example, what quality value is used or whether
snow- and ice-covered pixels are excluded from the analysis. In summary,
clear differences were found between the results of various algorithms, but
these differences are reduced in the most recent versions of the cloud data.
Funder
Deutsches Zentrum für Luft- und Raumfahrt European Space Agency
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference33 articles.
1. Acarreta, J. R., De Haan, J. F., and Stammes, P.: Cloud pressure retrieval using the O2–O2 absorption band at 477 nm, J. Geophys. Res., 109, D05204, https://doi.org/10.1029/2003JD003915, 2004. 2. Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for
tropospheric NO2 retrieval from space, J. Geophys. Res., 109, D04311, https://doi.org/10.1029/2003JD003962, 2004. 3. Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S.,
Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission
objectives and measurement modes, J. Atmos. Sci., 56, 127–150,
https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999. 4. Burrows, J. P., Hölzle, E., Goede, A. P. H., Visser, H., and Fricke, W.:
SCIAMACHY – Scanning imaging absorption spectrometer for atmospheric
chartography, Acta Astronaut., 35, 445–451,
https://doi.org/10.1016/0094-5765(94)00278-T, 1995. 5. Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V.,
Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R.,
Bramstedt, K., Eichmann, K.-U., Eisinger, M., and Perner, D.: The Global
Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific
Results, J. Atmos. Sci., 56, 151–175,
https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2, 1999.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|