A universally applicable method of calculating confidence bands for ice nucleation spectra derived from droplet freezing experiments

Author:

Fahy William D.ORCID,Shalizi Cosma Rohilla,Sullivan Ryan ChristopherORCID

Abstract

Abstract. A suite of generally applicable statistical methods based on empirical bootstrapping is presented for calculating uncertainty and testing the significance of quantitative differences in temperature and/or ice active site densities between ice nucleation temperature spectra derived from droplet freezing experiments. Such experiments are widely used to determine the heterogeneous ice nucleation properties and ice nucleation particle concentration spectra of different particle samples, as well as in studies of homogeneous freezing. Our methods avoid most of the assumptions and approximations inherent to existing approaches, and when sufficiently large sample sizes are used (approximately >150 droplets and >=1000 bootstrap samples in our system), can capture the full range of random variability and error in ice nucleation spectra. Applications include calculation of accurate confidence intervals and confidence bands, quantitative statistical testing of differences between observed freezing spectra, accurate subtraction of the background filtered water freezing signal, and calculation of a range of statistical parameters using data from a single droplet array freezing experiment if necessary. By providing additional statistical tools to the community, this work will improve the quality and accuracy of statistical tests and representations of uncertainty in future ice nucleation research, and will allow quantitative comparisons of the ice nucleation ability of different particles and surfaces.

Funder

Division of Chemistry

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3