Estimating cloud condensation nuclei concentrations from CALIPSO lidar measurements
-
Published:2022-02-08
Issue:3
Volume:15
Page:639-654
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Choudhury GoutamORCID, Tesche MatthiasORCID
Abstract
Abstract. We present a novel methodology to estimate cloud condensation nuclei
(CCN) concentrations from spaceborne CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite
Observations) lidar measurements. The
algorithm utilizes (i) the CALIPSO-derived backscatter and extinction
coefficient, depolarization ratio, and aerosol subtype information;
(ii) the normalized volume size distributions and refractive indices
from the CALIPSO aerosol model; and (iii) the MOPSMAP (modelled optical properties of ensembles of aerosol particles) optical
modelling package. For each CALIPSO height bin, we first select the
aerosol-type specific size distribution and then adjust it to
reproduce the extinction coefficient derived from the CALIPSO
retrieval. The scaled size distribution is integrated to estimate the
aerosol number concentration, which is then used in the CCN
parameterizations to calculate CCN concentrations at different
supersaturations. To account for the hygroscopicity of continental and
marine aerosols, we use the kappa parameterization and correct the
size distributions before the scaling step. The sensitivity of the
derived CCN concentrations to variations in the initial size
distributions is also examined. It is found that the uncertainty
associated with the algorithm can range between a factor of 2 and
3. Our results are comparable to results obtained using the POLIPHON (Polarization Lidar Photometer Networking)
method for extinction coefficients larger than 0.05 km−1. An
initial application to a case with coincident airborne in situ
measurements for independent validation shows promising results and
illustrates the potential of CALIPSO for constructing a global
height-resolved CCN climatology.
Funder
Deutscher Akademischer Austauschdienst
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference60 articles.
1. Anderson, T. L., Masonis, S. J., Covert, D. S., Charlson, R. J., and Rood, M. J.: In situ measurement of the aerosol extinction-to-backscatter ratio at a polluted continental site, J. Geophys. Res.-Atmos., 105, 26907–26915, https://doi.org/10.1029/2000JD900400, 2000. a 2. Andreae, M. O. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008. a 3. Ansmann, A., Mamouri, R.-E., Hofer, J., Baars, H., Althausen, D., and Abdullaev, S. F.: Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: updated POLIPHON conversion factors from global AERONET analysis, Atmos. Meas. Tech., 12, 4849–4865, https://doi.org/10.5194/amt-12-4849-2019, 2019. a, b, c, d, e 4. Ansmann, A., Ohneiser, K., Chudnovsky, A., Baars, H., and Engelmann, R.: CALIPSO Aerosol-Typing Scheme Misclassified Stratospheric Fire Smoke: Case Study From the 2019 Siberian Wildfire Season, Front. Environ. Sci., 9, 769852, https://doi.org/10.3389/fenvs.2021.769852, 2021a. a 5. Ansmann, A., Ohneiser, K., Mamouri, R.-E., Knopf, D. A., Veselovskii, I., Baars, H., Engelmann, R., Foth, A., Jimenez, C., Seifert, P., and Barja, B.: Tropospheric and stratospheric wildfire smoke profiling with lidar: mass, surface area, CCN, and INP retrieval, Atmos. Chem. Phys., 21, 9779–9807, https://doi.org/10.5194/acp-21-9779-2021, 2021b. a, b, c, d, e
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|