Online measurements of cycloalkanes based on NO+ chemical ionization in proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS)

Author:

Chen Yubin,Yuan BinORCID,Wang Chaomin,Wang SihangORCID,He Xianjun,Wu Caihong,Song Xin,Huangfu YiboORCID,Li Xiao-Bing,Liao Yijia,Shao Min

Abstract

Abstract. Cycloalkanes are important trace hydrocarbons existing in the atmosphere, and they are considered a major class of intermediate volatile organic compounds (IVOCs). Laboratory experiments showed that the yields of secondary organic aerosols (SOAs) from oxidation of cycloalkanes are higher than acyclic alkanes with the same carbon number. However, measurements of cycloalkanes in the atmosphere are still challenging at present. In this study, we show that online measurements of cycloalkanes can be achieved using proton transfer reaction time-of-flight mass spectrometry with NO+ chemical ionization (NO+ PTR-ToF-MS). Cyclic and bicyclic alkanes are ionized with NO+ via hydride ion transfer, leading to major product ions of CnH2n-1+ and CnH2n-3+, respectively. As isomers of cycloalkanes, alkenes undergo association reactions with major product ions of CnH2n ⚫ (NO)+, and concentrations of 1-alkenes and trans-2-alkenes in the atmosphere are usually significantly lower than cycloalkanes (about 25 % and <5 %, respectively), as a result inducing little interference with cycloalkane detection in the atmosphere. Calibrations of various cycloalkanes show similar sensitivities associated with small humidity dependence. Applying this method, cycloalkanes were successfully measured at an urban site in southern China and during a chassis dynamometer study of vehicular emissions. Concentrations of both cyclic and bicyclic alkanes are significant in urban air and vehicular emissions, with comparable cyclic alkanes / acyclic alkanes ratios between urban air and gasoline vehicles. These results demonstrate that NO+ PTR-ToF-MS provides a new complementary approach for the fast characterization of cycloalkanes in both ambient air and emission sources, which can be helpful to fill the gap in understanding the importance of cycloalkanes in the atmosphere.

Funder

National Natural Science Foundation of China

Guangdong Innovative and Entrepreneurial Research Team Program

Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3