Climate and land use change impacts on global terrestrial ecosystems and river flows in the HadGEM2-ES Earth system model using the representative concentration pathways
-
Published:2015-03-03
Issue:5
Volume:12
Page:1317-1338
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Betts R. A., Golding N., Gonzalez P.ORCID, Gornall J., Kahana R., Kay G., Mitchell L., Wiltshire A.
Abstract
Abstract. A new generation of an Earth system model now includes a number of land-surface processes directly relevant to analyzing potential impacts of climate change. This model, HadGEM2-ES, allows us to assess the impacts of climate change, multiple interactions, and feedbacks as the model is run. This paper discusses the results of century-scale HadGEM2-ES simulations from an impacts perspective – specifically, terrestrial ecosystems and water resources – for four different scenarios following the representative concentration pathways (RCPs), used in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2013, 2014). Over the 21st century, simulated changes in global and continental-scale terrestrial ecosystems due to climate change appear to be very similar in all 4 RCPs, even though the level of global warming by the end of the 21st century ranges from 2 °C in the lowest scenario to 5.5° in the highest. A warming climate generally favours broadleaf trees over needleleaf, needleleaf trees over shrubs, and shrubs over herbaceous vegetation, resulting in a poleward shift of temperate and boreal forests and woody tundra in all scenarios. Although climate related changes are slightly larger in scenarios of greater warming, the largest differences between scenarios arise at regional scales as a consequence of different patterns of anthropogenic land cover change. In the model, the scenario with the lowest global warming results in the most extensive decline in tropical forest cover due to a large expansion of agriculture. Under all four RCPs, fire potential could increase across extensive land areas, particularly tropical and sub-tropical latitudes. River outflows are simulated to increase with higher levels of CO2 and global warming in all projections, with outflow increasing with mean temperature at the end of the 21st century at the global scale and in North America, Asia, and Africa. In South America, Europe, and Australia, the relationship with climate warming and CO2 rise is less clear, probably as a result of land cover change exerting a dominant effect in those regions.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference59 articles.
1. Alo, C. A. and Wang, G.: Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models, J. Geophys. Res., 113, G01004, https://doi.org/10.1029/2007JG000528, 2008 2. Arnell, N. W. and Lloyd-Hughes, B.: Global-scale impacts of climate change at different levels of forcing, AVOID project report AV/WS2/D1/R35, available for download from http://www.avoid.uk.net/2012, 2012. 3. Bergengren, J., Waliser, D., and Yung, Y.: Ecological sensitivity: a biospheric view of climate change, Clim. Change, 107, 433–457, 2011. 4. Bertrand, R., Lenoir, J., Piedallu, C., Riofrío-Dillon, G., de Ruffray, P., Vidal, C., Pierrat, J. C., and Gégout, J. C.: Changes in plant community composition lag behind climate warming in lowland forests, Nature 479, 517–20, 2011. 5. Betts, R. A., Cox, P. M., Collins, M., Harris, P. P., Huntingford, C., and Jones, C. D.: The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming, Theor. Appl. Climatol., 78, 157–175, 2004.
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|