Record summer rains in 2019 led to massive loss of surface and cave ice in SE Europe
-
Published:2021-05-21
Issue:5
Volume:15
Page:2383-2399
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Perşoiu AurelORCID, Buzjak Nenad, Onaca Alexandru, Pennos ChristosORCID, Sotiriadis Yorgos, Ionita MonicaORCID, Zachariadis Stavros, Styllas MichaelORCID, Kosutnik Jure, Hegyi AlexandruORCID, Butorac Valerija
Abstract
Abstract. Glaciers worldwide are shrinking at an accelerated rate as the climate changes in response to anthropogenic influence. While increasing air temperature is the main factor behind glacier mass and volume loss, variable patterns of precipitation distribution also play a role, though these are not as well understood. Furthermore, while the response of surface glaciers (from large polar ice sheets to small alpine glaciers) to climatic changes is well documented and continuously monitored, little to nothing is known about how cave glaciers (perennial ice accumulations in rock-hosted caves) react to atmospheric warming. In this context, we present here the response of cave and surface glaciers in SE Europe to the extreme precipitation events occurring between May and July 2019 in SE Europe. Surface glaciers in the northern Balkan Peninsula lost between 17 % and 19 % of their total area, while cave glaciers in Croatia, Greece, Romania and Slovenia lost ice at levels higher than any recorded by instrumental observations during the past decades. The melting was likely the result of large amounts of warm water delivered directly to the surface of the glaciers, leading to rapid reduction in the area of surface glaciers and the thickness of cave glaciers. As climate models predict that such extreme precipitation events are set to increase in frequency and intensity, the presence of cave glaciers in SE Europe and the paleoclimatic information they host may be lost in the near future. Moreover, the same projected continuous warming and increase in precipitation extremes could pose an additional threat to the alpine glaciers in southern Europe, resulting in faster-than-predicted melting.
Funder
EEA Grants/Norway Grants Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference78 articles.
1. Bădăluţă, C.-A., Perşoiu, A., Ionita, M., and Piotrowska, N.: Stable isotopes in cave ice suggest summer temperatures in east-central Europe are linked to Atlantic Multidecadal Oscillation variability, Clim. Past, 16, 2445–2458, https://doi.org/10.5194/cp-16-2445-2020, 2020. 2. Brad, T., Itcus, C., Pascu, M.-D., Perşoiu, A., Hillebrand-Voiculescu, A., Iancu, L., and Purcarea, C.: Fungi in perennial ice from Scărişoara Ice Cave (Romania), Sci. Rep., 8, 10096, https://doi.org/10.1038/s41598-018-28401-1, 2018. 3. Braithwaite, R. J. and Raper, S. C. B.: Glaciological conditions in seven contrasting regions estimated with the degree-day model, Ann. Glaciol., 46, 296–302, https://doi.org/10.3189/172756407782871206, 2007. 4. Brown, J., Harper, J., and Humphrey, N.: Cirque glacier sensitivity to 21st century warming: Sperry Glacier, Rocky Mountains, USA, Glob. Planet. Change 74, 91–98, https://doi.org/10.1016/j.gloplacha.2010.09.001, 2010. 5. Buzjak, N., Bočić, N., Paar, D., Bakšić, D., and Dubovečak, V.: Ice caves in Croatia, in: Ice caves, edited by: Perşoiu, A. and Lauritzen, S. E., Elsevier, Amsterdam, the Netherlands, 335–369, https://doi.org/10.1016/B978-0-12-811739-2.00016-4, 2018.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|