Pressure dependent calibration of the OH and HO<sub>x</sub> channels of a FAGE HO<sub>x</sub> instrument using the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC)
Author:
Winiberg F. A. F., Smith S. C., Bejan I., Brumby C. A., Ingham T., Malkin T. L., Orr S. C., Heard D. E.ORCID, Seakins P. W.ORCID
Abstract
Abstract. The calibration of field instruments used to measure concentrations of OH and HO2 worldwide have traditionally relied on a single method utilising the photolysis of water vapour in air in a flow tube at atmospheric pressure. Here the calibration of two FAGE (Fluorescence Assay by Gaseous Expansion) apparatuses designed for HOx (OH and HO2) measurements have been investigated as a function of external pressure and temperature, using two different laser systems. The conventional method of generating known concentrations of HOx from H2O vapour photolysis in a turbulent flowtube impinging just outside the FAGE sample inlet has been used to study instrument sensitivity as a function of internal fluorescence cell pressure (1.8–3.8 mbar). An increase in the calibration constants COH and CHO2 with pressure was observed and an empirical linear regression of the data was used to describe the trends, with ΔCOH = (17 ± 11)% and ΔCHO2 = (31.6 ± 4.4)% increase per mbar air (uncertainties quoted to 2σ). Presented here are the first direct measurements of the FAGE calibration constants as a function of external pressure (440–1000 mbar) in a controlled environment using the University of Leeds HIRAC chamber (Highly Instrumented Reactor for Atmospheric Chemistry). Two methods were used: the temporal decay of hydrocarbons for calibration of OH, and the kinetics of the second-order recombination of HO2 for HO2 calibrations. Over comparable conditions for the FAGE cell, the two alternative methods are in good agreement with the conventional method, with the average ratio of calibration factors (conventional : alternative) across the entire pressure range COH(conv)/COH(alt) = 1.19 ± 0.26 and CHO2(conv)/CHO2(alt) = 0.96 ± 0.18 (2σ). These alternative calibration methods currently have comparable systematic uncertainties than the conventional method: ~28% and ~41% for the alternative OH and HO2 calibration methods respectively compared to 35% for the H2O vapour photolysis method; ways in which these can be reduced in the future are discussed. The good agreement between the very different methods of calibration leads to increased confidence in HOx field measurements and particularly in aircraft based HOx measurements, where there are substantial variations in external pressure, and assumptions are made regarding loss rates on inlets as a function of pressure.
Publisher
Copernicus GmbH
Reference62 articles.
1. Aschmutat, U., Hessling, M., Holland, F., and Hofzumahaus, A.: A tunable source of Hydroxyl (OH) and Hydroperoxy (HO2) radicals: in the range between 106 and 109 cm−3, in: Physico-Chemical Behaviour of Atmospheric Pollutants, edited by: Restelli, G. A. A. G., European Comission, Brussels, 811–816, 1994. 2. Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev., 86, 69–201, 1986. 3. Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, Atmos. Chem. Phys., 3, 2233–2307, https://doi.org/10.5194/acp-3-2233-2003, 2003. 4. Atkinson, R. and Pitts, J. N. J.: Rate constants for the reaction of OH radicals with propylene and the butenes over the temperature range 297–425 K, J. Chem. Phys., 63, 3591–3595, 1975. 5. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|