Evaluation of different methods to model near-surface turbulent fluxes for a mountain glacier in the Cariboo Mountains, BC, Canada
-
Published:2017-12-12
Issue:6
Volume:11
Page:2897-2918
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Radić Valentina, Menounos Brian, Shea JosephORCID, Fitzpatrick Noel, Tessema Mekdes A., Déry Stephen J.ORCID
Abstract
Abstract. As part of surface energy balance models used to simulate glacier melting, choosing parameterizations to adequately estimate turbulent heat fluxes is extremely challenging. This study aims to evaluate a set of four aerodynamic bulk methods (labeled as C methods), commonly used to estimate turbulent heat fluxes for a sloped glacier surface, and two less commonly used bulk methods developed from katabatic flow models. The C methods differ in their parameterizations of the bulk exchange coefficient that relates the fluxes to the near-surface measurements of mean wind speed, air temperature, and humidity. The methods' performance in simulating 30 min sensible- and latent-heat fluxes is evaluated against the measured fluxes from an open-path eddy-covariance (OPEC) method. The evaluation is performed at a point scale of a mountain glacier, using one-level meteorological and OPEC observations from multi-day periods in the 2010 and 2012 summer seasons. The analysis of the two independent seasons yielded the same key findings, which include the following: first, the bulk method, with or without the commonly used Monin–Obukhov (M–O) stability functions, overestimates the turbulent heat fluxes over the observational period, mainly due to a substantial overestimation of the friction velocity. This overestimation is most pronounced during the katabatic flow conditions, corroborating the previous findings that the M–O theory works poorly in the presence of a low wind speed maximum. Second, the method based on a katabatic flow model (labeled as the KInt method) outperforms any C method in simulating the friction velocity; however, the C methods outperform the KInt method in simulating the sensible-heat fluxes. Third, the best overall performance is given by a hybrid method, which combines the KInt approach with the C method; i.e., it parameterizes eddy viscosity differently than eddy diffusivity. An error analysis reveals that the uncertainties in the measured meteorological variables and the roughness lengths produce errors in the modeled fluxes that are smaller than the differences between the modeled and observed fluxes. This implies that further advances will require improvement to model theory rather than better measurements of input variables. Further data from different glaciers are needed to investigate any universality of these findings.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference79 articles.
1. Anderson, B., Mackintosh, A., Stumm, D., George, L., Kerr, T., Winter-Billington, A., and Fitzsimons, S.: Climate sensitivity of a high-precipitation glacier in New Zealand, J. Glaciol., 56, 114–128, 2010. 2. Andreas, E.: A theory for the scalar roughness and the scalar transfer coefficient over snow and sea ice, Bound.-Lay. Meteorol., 38, 159–184, https://doi.org/10.1007/BF00121562, 1987. 3. Andreas, E. L., Persson, P. O. G., Jordan, R. E., Horst, T. W., Guest, P. S., Grachev, A. A., and Fairall, C. W.: Parameterizing Turbulent Exchange over Sea Ice in Winter, J. Hydrometeorol., 11, 87–104, https://doi.org/10.1175/2009JHM1102.1, 2010. 4. Arya, S. P.: Introduction to Micrometeorology, Academic Press, San Diego, 415 pp., 2001. 5. Axelsen, S. L. and van Dop, H.: Large-eddy simulation of katabatic winds, Part 1: Comparison with observations, Acta Geophys., 57, 803–836, https://doi.org/10.2478/s11600-009-0041-6, 2009.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|