Mercury dynamics in the Rocky Mountain, Colorado, Snowpack
Author:
Faïn X.,Helmig D.,Hueber J.,Obrist D.,Williams M. M.
Abstract
Abstract. Gaseous Elemental Mercury (GEM) was monitored at the Niwot Ridge (NWT) long-term ecological research (LTER) site (Colorado, USA, 40° N) from interstitial air extracted from the snowpack at depths ranging from the snow surface to 10 cm above the soil. A highly dynamic cycling of mercury (Hg) in this mid-latitude snowpack was observed. Patterns were driven by both GEM production in surface snow and GEM destruction in the deeper snowpack layers. Thorough mixing and vertical transport processes were observed through the snowpack. GEM was photochemically produced near the snow-air interface leading to enhanced GEM levels in interstitial air of surface snow of up to 8 ng m−3. During low wind periods, GEM in surface snow layers remained significantly above ambient air levels at night as well, which may indicate a potential weak GEM production over night. Analysis of vertical GEM gradients in the snowpack show that surface GEM enhancements efficiently propagated down the snowpack, with a temporal lag in peak GEM levels observed with increasing depth. Downward diffusion was responsible for much of these patterns, although vertical advection also contributed to vertical redistribution. Destruction of GEM in the lower snowpack layers was attributed to dark oxidation of GEM. Analysis of vertical GEM/CO2 flux ratios indicated that this GEM destruction occurred in the snow and not in the underlying soil. The strong, diurnal patterns of photochemical GEM production at the surface ultimately lead to re-emission losses of deposited Hg back to the atmosphere. The NWT data show that highest of GEM production and emission occur shortly after fresh snowfall, indicating that fresh snow possibly resupplies photoreducible Hg to the snowpack.
Publisher
Copernicus GmbH
Reference56 articles.
1. Bartels-Rausch, T., Huthwelker, T., Jori, M., Gaggler, H. W., and Ammann, M.: Interaction of gaseous elemental mercury with snow surfaces: laboratory investigation, Environ. Res. Lett., 3, 045009, https://doi.org/10.1088/1748-9326/3/4/045009, 2008. 2. Bartels-Rausch, T., Krysztofiak, G., Bernhard, A., Schlaeppi, M., Schwikowski, M., and Ammann, M.: Photoinduced reduction of divalent mercury in ice by organic matter, Chemosphere, 82, 199–203, https://doi.org/10.1016/j.chemosphere.2010.10.020, 2011. 3. Bocquet F., Helmig D., and Oltmans S.J.: Ozone in interstitial air of the mid-latitude, seasonal snowpack at Niwot Ridge, Colorado, Arctic, Antarctic and Alpine Research, 39, 375–387, 2007. 4. Caine, N.: Snowpack influences on geomorphic processes in Green Lakes Valley, Colorado Front Range, Geog. J., 161, 55–68, 1995. 5. Dominé, F. and Shepson, P. B.: Air-Snow Interactions and Atmospheric Chemistry, Science, 297, 1506–1510, 2002.
|
|