Cloud scavenging of anthropogenic refractory particles at a mountain site in North China

Author:

Liu LeiORCID,Zhang Jian,Xu LiangORCID,Yuan Qi,Huang Dao,Chen JianminORCID,Shi Zongbo,Sun YeleORCID,Fu PingqingORCID,Wang Zifa,Zhang DaizhouORCID,Li WeijunORCID

Abstract

Abstract. Aerosol–cloud interactions remain a major source of uncertainty in climate forcing estimates. Few studies have been conducted to characterize the aerosol–cloud interactions in heavily polluted conditions worldwide. In this study, cloud residual and cloud interstitial particles were collected during cloud events under different pollution levels from 22 July to 1 August 2014 at Mt. Tai (1532 m above sea level) located in the North China Plain (NCP). A transmission electron microscope was used to investigate the morphology, size, and chemical composition of individual cloud residual and cloud interstitial particles, and to study mixing properties of different aerosol components in individual particles. Our results show that S-rich particles were predominant (78 %) during clean periods (PM2.5<15 µg m−3), but a large number of anthropogenic refractory particles (e.g., soot, fly ash, and metal) and their mixtures with S-rich particles (defined as “S-refractory”) were observed during polluted periods. Cloud droplets collected during polluted periods were found to become an extremely complicated mixture by scavenging abundant refractory particles. We found that 76 % of cloud residual particles were S-refractory particles and that 26 % of cloud residual particles contained two or more types of refractory particles. Soot-containing particles (i.e., S-soot and S-fly ash/metal-soot) were the most abundant (62 %) among cloud residual particles, followed by fly ash/metal-containing particles (i.e., S-fly ash/metal and S-fly ash/metal-soot, 37 %). These complicated cloud droplets have not been reported in clean continental or marine air before. Our findings provide an insight into the potential impacts on cloud radiative forcing from black carbon and metal catalyzed reactions of SO2 in micro-cloud droplets containing soluble metals released from fly ash and metals over polluted air.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3