Soil fluxes of carbonyl sulfide (COS), carbon monoxide, and carbon dioxide in a boreal forest in southern Finland
-
Published:2018-02-01
Issue:2
Volume:18
Page:1363-1378
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Sun WuORCID, Kooijmans Linda M. J.ORCID, Maseyk KadmielORCID, Chen HuilinORCID, Mammarella Ivan, Vesala Timo, Levula Janne, Keskinen Helmi, Seibt Ulli
Abstract
Abstract. Soil is a major contributor to the biosphere–atmosphere exchange of carbonyl sulfide (COS) and carbon monoxide (CO). COS is a tracer with which to quantify terrestrial photosynthesis based on the coupled leaf uptake of COS and CO2, but such use requires separating soil COS flux, which is unrelated to photosynthesis, from ecosystem COS uptake. For CO, soil is a significant natural sink that influences the tropospheric CO budget. In the boreal forest, magnitudes and variabilities of soil COS and CO fluxes remain poorly understood. We measured hourly soil fluxes of COS, CO, and CO2 over the 2015 late growing season (July to November) in a Scots pine forest in Hyytiälä, Finland. The soil acted as a net sink of COS and CO, with average uptake rates around 3 pmol m−2 s−1 for COS and 1 nmol m−2 s−1 for CO. Soil respiration showed seasonal dynamics controlled by soil temperature, peaking at around 4 µmol m−2 s−1 in late August and September and dropping to 1–2 µmol m−2 s−1 in October. In contrast, seasonal variations of COS and CO fluxes were weak and mainly driven by soil moisture changes through diffusion limitation. COS and CO fluxes did not appear to respond to temperature variation, although they both correlated well with soil respiration in specific temperature bins. However, COS : CO2 and CO : CO2 flux ratios increased with temperature, suggesting possible shifts in active COS- and CO-consuming microbial groups. Our results show that soil COS and CO fluxes do not have strong variations over the late growing season in this boreal forest and can be represented with the fluxes during the photosynthetically most active period. Well-characterized and relatively invariant soil COS fluxes strengthen the case for using COS as a photosynthetic tracer in boreal forests.
Funder
Seventh Framework Programme Academy of Finland
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference84 articles.
1. Asaf, D., Rotenberg, E., Tatarinov, F., Dicken, U., Montzka, S. A., and Yakir, D.: Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux, Nat. Geosci., 6, 186–190, https://doi.org/10.1038/ngeo1730, 2013. 2. Badger, M. R. and Price, G. D.: The role of carbonic anhydrase in photosynthesis, Annu. Rev. Plant Phys., 45, 369–392, https://doi.org/10.1146/annurev.pp.45.060194.002101, 1994. 3. Bartholomew, G. W. and Alexander, M.: Microbial metabolism of carbon monoxide in culture and in soil, Appl. Environ. Microb., 37, 932–937, 1979. 4. Berkelhammer, M., Asaf, D., Still, C., Montzka, S., Noone, D., Gupta, M., Provencal, R., Chen, H., and Yakir, D.: Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide, Global Biogeochem. Cy., 28, 161–179, https://doi.org/10.1002/2013GB004644, 2014. 5. Berry, J., Wolf, A., Campbell, J. E., Baker, I., Blake, N., Blake, D., Denning, A. S., Kawa, S. R., Montzka, S. A., Seibt, U., Stimler, K., Yakir, D., and Zhu, Z.-X.: A coupled model of the global cycles of carbonyl sulfide and CO2: a possible new window on the carbon cycle, J. Geophys. Res.-Biogeo., 118, 842–852, https://doi.org/10.1002/jgrg.20068, 2013.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|