Temporal variations in the hygroscopicity and mixing state of black carbon aerosols in a polluted megacity area

Author:

Li Kangning,Ye XingnanORCID,Pang Hongwei,Lu Xiaohui,Chen Hong,Wang Xiaofei,Yang Xin,Chen JianminORCID,Chen YingjunORCID

Abstract

Abstract. Black carbon (BC) aerosols in the atmosphere strongly affect radiative forcing. They are mainly removed from the air by wet deposition, and their lifetime is controlled by their water uptake ability or hygroscopicity, which is a function of aerosol mixing states. It is well known that atmospheric aging processes coat various materials on BC aerosols and affect their mixing states and hygroscopicity. However, detailed relations between the aging processes and the hygroscopicity and mixing state of BC aerosol particles in polluted city areas are not well understood. Here, we studied the temporal variation in hygroscopicity and its correlation with the mixing state of ambient BC particles during the summer of 2017 in Shanghai, China, using a hygroscopic tandem differential mobility analyzer inline with a single-particle soot photometer (HTDMA–SP2 system) as well as a single-particle aerosol mass spectrometer (SPAMS). BC particles with 120, 240, and 360 nm in dry diameter were humidified at relative humidity (RH)  =  85 %. After humidification, particles with growth factors (GFs) of 1.0, 1.2, and 1.4, representing the BC particles with different hygroscopicities (hydrophobic, transition, and hydrophilic modes, respectively), were analyzed with a SP2 to obtain their BC mixing states. The diurnal trends in coating thickness and chemical mixing state show that coating materials of BC particles were distinct between daytime and nighttime. The differences were associated with the hygroscopicity of BC particles. Single-particle mass spectrometry and other chemical characterization techniques revealed that with lower temperature and higher RH during nighttime, formation or condensation of nitrates resulted in an enhanced hygroscopicity of BC particles. During daytime, secondary organic carbon formation was mainly responsible for the change of hygroscopicity of BC particles. Due to the high hygroscopicity of inorganic nitrate, a thinner nitrate coating on BC particles could convert fresh BC particles to aged hygroscopic ones during nighttime while a thicker coating layer of secondary materials was required to reach the same overall hygroscopicity during daytime because of the participation of secondary organic carbon. Different atmospheric aging processes between daytime and nighttime led to the change of BC particles' mixing states, which play a fundamental role in determining their hygroscopicity. To our knowledge, this is the first report of links between temporal variations in the hygroscopic growth of BC particles and atmospheric aging processes in polluted environments. These findings have significant ramifications in understanding the aging process, wet removal, and climate effects of BC particles.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3