Evaluation of autoconversion and accretion enhancement factors in general circulation model warm-rain parameterizations using ground-based measurements over the Azores

Author:

Wu PengORCID,Xi BaikeORCID,Dong Xiquan,Zhang ZhiboORCID

Abstract

Abstract. A great challenge in climate modeling is how to parameterize subgrid cloud processes, such as autoconversion and accretion in warm-rain formation. In this study, we use ground-based observations and retrievals over the Azores to investigate the so-called enhancement factors, Eauto and Eaccr, which are often used in climate models to account for the influence of subgrid variance of cloud and precipitation water on the autoconversion and accretion processes. Eauto and Eaccr are computed for different equivalent model grid sizes. The calculated Eauto values increase from 1.96 (30 km) to 3.2 (180 km), and the calculated Eaccr values increase from 1.53 (30 km) to 1.76 (180 km). Comparing the prescribed enhancement factors in Morrison and Gettleman (2008, MG08) to the observed ones, we found that a higher Eauto (3.2) at small grids and lower Eaccr (1.07) are used in MG08, which might explain why most of the general circulation models (GCMs) produce too-frequent precipitation events but with too-light precipitation intensity. The ratios of the rain to cloud water mixing ratio (qr/qc) at Eaccr=1.07 and Eaccr=2.0 are 0.063 and 0.142, respectively, from observations, further suggesting that the prescribed value of Eaccr=1.07 used in MG08 is too small to simulate precipitation intensity correctly. Both Eauto and Eaccr increase when the boundary layer becomes less stable, and the values are larger in precipitating clouds (CLWP>75 gm−2) than those in non-precipitating clouds (CLWP<75 gm−2). Therefore, the selection of Eauto and Eaccr values in GCMs should be regime- and resolution-dependent.

Funder

Office of Science

Division of Atmospheric and Geospace Sciences

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3