Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 2: Controls on the ice crystal number concentration
-
Published:2018-10-09
Issue:19
Volume:18
Page:14351-14370
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Gryspeerdt EdwardORCID, Sourdeval OdranORCID, Quaas Johannes, Delanoë Julien, Krämer MartinaORCID, Kühne Philipp
Abstract
Abstract. The ice crystal number concentration (Ni) is a key property of
ice clouds, both radiatively and microphysically. Due to sparse
in situ measurements of ice cloud properties, the controls on the
Ni have remained difficult to determine. As more advanced
treatments of ice clouds are included in global models, it is becoming
increasingly necessary to develop strong observational constraints on the
processes involved. This work uses the DARDAR-Nice Ni retrieval described in Part 1
to investigate the controls on the Ni at a global scale. The
retrieved clouds are separated by type. The effects of temperature, proxies
for in-cloud updraft and aerosol concentrations are investigated.
Variations in the cloud top Ni (Ni(top))
consistent with both homogeneous and heterogeneous nucleation are observed
along with differing relationships between aerosol and
Ni(top) depending on the prevailing meteorological
situation and aerosol type. Away from the cloud top, the Ni
displays a different sensitivity to these controlling factors, providing a
possible explanation for the low Ni sensitivity to temperature
and ice nucleating particles (INP) observed in previous in situ studies. This satellite dataset provides a new way of investigating the response of
cloud properties to meteorological and aerosol controls. The results
presented in this work increase our confidence in the retrieved
Ni and will form the basis for further study into the processes
influencing ice and mixed phase clouds.
Funder
European Research Council Bundesministerium für Bildung und Forschung Deutsche Forschungsgemeinschaft Imperial College London
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference95 articles.
1. Baker, B. A. and Lawson, R. P.: In Situ Observations of the Microphysical
Properties of Wave, Cirrus, and Anvil Clouds. Part I: Wave Clouds, J. Atmos.
Sci., 63, 3160–3185, https://doi.org/10.1175/JAS3802.1, 2006. a 2. Barahona, D. and Nenes, A.: Parameterization of cirrus cloud formation in
large-scale models: Homogeneous nucleation, J. Geophys. Res., 113, D11211,
https://doi.org/10.1029/2007JD009355, 2008. a, b 3. Barahona, D., Molod, A., and Kalesse, H.: Direct estimation of the global
distribution of vertical velocity within cirrus clouds, Sci. Rep., 7, 6840,
https://doi.org/10.1038/s41598-017-07038-6, 2017. a 4. Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R. J.,
Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S.,
Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis
and forecast in the European Centre for Medium-Range Weather Forecasts
Integrated Forecast System: 2. Data assimilation, J. Geophys. Res., 114,
D13205, https://doi.org/10.1029/2008JD011115, 2009. a 5. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P.,
Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.,
Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols, in: book section 7,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 571–658,
https://doi.org/10.1017/CBO9781107415324.016, 2013. a
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|