Agricultural harvesting emissions of ice-nucleating particles

Author:

Suski Kaitlyn J.ORCID,Hill Tom C. J.ORCID,Levin Ezra J. T.,Miller Anna,DeMott Paul J.ORCID,Kreidenweis Sonia M.ORCID

Abstract

Abstract. Agricultural activities can modify natural ecosystems and change the nature of the aerosols emitted from those landscapes. The harvesting of crops can loft plant fragments and soil dust into the atmosphere that can travel long distances and interact with clouds far from their sources. In this way harvesting may contribute substantially to ice-nucleating particle (INP) concentrations, especially in regions where agriculture makes up a large percentage of land use. However, a full characterization of particles emitted during harvesting has not been reported. This study characterizes immersion mode INPs emitted during harvesting of several crops in the High Plains region of the United States. The Colorado State University Continuous Flow Diffusion Chamber (CFDC) and the Ice Spectrometer (IS) were utilized to measure INP concentrations during active harvesting of four crops in Kansas and Wyoming. Large spikes of INPs were observed during harvesting, with concentrations over 200 L−1 at −30 °C measured during a wheat harvest. To differentiate between mineral and organic components, a novel heating tube method was employed in real time upstream of the CFDC to deactivate organic INPs in situ. The results indicate that harvesting produces a complex mixture of organic, soil dust, and mineral components that varies for different crops. Electron microscopy analysis showed that while mineral components made up a large proportion of INPs, organic components comprised over 40 % of measured INPs for certain crops at warm temperatures. Heating and enzyme post-treatment of aerosol samples collected for IS processing indicated that bacteria and heat-labile and heat-stable organics contributed to wheat harvest-produced INPs. These results indicate that plant material and organic particles are a significant component of harvest INPs and their impacts on ice formation in clouds and precipitation on a regional scale should be explored.

Funder

National Science Foundation

Reed College

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3