Seasonal evaluation of tropospheric CO<sub>2</sub> over the Asia-Pacific region observed by the CONTRAIL commercial airliner measurements

Author:

Umezawa TakuORCID,Matsueda Hidekazu,Sawa Yousuke,Niwa Yosuke,Machida Toshinobu,Zhou Lingxi

Abstract

Abstract. Measurement of atmospheric carbon dioxide (CO2) is indispensable for top-down estimation of surface CO2 sources/sinks by an atmospheric transport model. Despite the growing importance of Asia in the global carbon budget, the region has only been sparsely monitored for atmospheric CO2 and our understanding of atmospheric CO2 variations in the region (and thereby that of the regional carbon budget) is still limited. In this study, we present climatological CO2 distributions over the Asia-Pacific region obtained from the CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) measurements. The high-frequency in-flight CO2 measurements over 10 years reveal a clear seasonal variation in CO2 in the upper troposphere (UT), with a maximum occurring in April–May and a minimum in August–September. The CO2 mole fraction in the UT north of 40∘ N is low and highly variable in June–August due to the arrival of air parcels with seasonally low CO2 caused by the summertime biospheric uptake in boreal Eurasia. For August–September in particular, the UT CO2 is noticeably low within the Asian summer monsoon anticyclone associated with the convective transport of strong biospheric CO2 uptake signal over South Asia. During September as the anticyclone decays, a spreading of this low-CO2 area in the UT is observed in the vertical profiles of CO2 over the Pacific Rim of continental East Asia. Simulation results identify the influence of anthropogenic and biospheric CO2 fluxes in the seasonal evolution of the spatial CO2 distribution over the Asia-Pacific region. It is inferred that a substantial contribution to the UT CO2 over the northwestern Pacific comes from continental East Asian emissions in spring; but in the summer monsoon season, the prominent air mass origin switches to South Asia and/or Southeast Asia with a distinct imprint of the biospheric CO2 uptake. The CONTRAIL CO2 data provide useful constraints to model estimates of surface fluxes and to the evaluation of the satellite observations, in particular for the Asia-Pacific region.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference64 articles.

1. Adachi, S. and Kimura, F.: A 36-year Climatology of Surface Cyclogenesis in East Asia Using High-resolution Reanalysis Data, SOLA, 3, 113–116, https://doi.org/10.2151/sola.2007?029, 2007.

2. Andres, R. J., Boden, T. A., and Marland, G.: Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U. S. Department of Energy, Oak Ridge, Tenn., USA, https://doi.org/10.3334/CDIAC/ffe.MonthlyMass.2013, 2013.

3. Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans P. P., and White, J. W. C.: Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years, Nature, 488, 70–72, https://doi.org/10.1038/nature11299, 2012.

4. Bergman, J. W., Fierli, F., Jensen, E. J., Honomichl, S., and Pan, L. L.: Boundary layer sources for the Asian anticyclone: Regional contributions to a vertical conduit, J. Geophys. Res.-Atmos., 118, 2560–2575, https://doi.org/10.1002/jgrd.50142, 2013.

5. Bey, I., Jacob, D. J., Logan, J. A., and Yantosca, R. M.: Asian chemical outflow to the Pacific in spring: Origins, pathways, and budgets, J. Geophys. Res., 106, 23097–23113, https://doi.org/10.1029/2001JD000806, 2001.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3