Direct measurements of NO<sub>3</sub> reactivity in and above the boundary layer of a mountaintop site: identification of reactive trace gases and comparison with OH reactivity

Author:

Liebmann Jonathan M.,Muller Jennifer B. A.ORCID,Kubistin DagmarORCID,Claude Anja,Holla RobertORCID,Plass-Dülmer Christian,Lelieveld JosORCID,Crowley John N.ORCID

Abstract

Abstract. We present direct measurements of the summertime total reactivity of NO3 towards organic trace gases, kOTGNO3, at a rural mountain site (988 m a.s.l.) in southern Germany in 2017. The diel cycle of kOTGNO3 was strongly influenced by local meteorology with high reactivity observed during the day (values of up to 0.3 s−1) and values close to the detection limit (0.005 s−1) at night when the measurement site was in the residual layer and free troposphere. Daytime values of kOTGNO3 were sufficiently large that the loss of NO3 due to reaction with organic trace gases competed with its photolysis and reaction with NO. Within experimental uncertainty, monoterpenes and isoprene accounted for all of the measured NO3 reactivity. Averaged over the daylight hours, more than 25 % of NO3 was removed via reaction with biogenic volatile organic compounds (BVOCs), implying a significant daytime loss of NOx and the formation of organic nitrates due to NO3 chemistry. Ambient NO3 concentrations were measured on one night and were comparable to those derived from a stationary-state calculation using measured values of kOTGNO3. We present and compare the first simultaneous, direct reactivity measurements for the NO3 and OH radicals. The decoupling of the measurement site from ground-level emissions resulted in lower reactivity at night for both radicals, though the correlation between OH and NO3 reactivity was weak as would be anticipated given their divergent trends in rate constants with many organic trace gases.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3