Application of a wavelet technique for the detection of earthquake signatures in the geomagnetic field

Author:

Alperovich L.,Zheludev V.,Hayakawa M.

Abstract

Abstract. We developed an algorithm especially adapted to single-station wavelet detection of geomagnetic events, which precede or accompany the earthquakes. The detection problem in this situation is complicated by a great variability of earthquakes and accompanied phenomena, which aggravates finding characteristic features of the events. Therefore we chose to search for the characteristic features of both "disturbed" intervals (containing earthquakes) and "quiet" recordings. In this paper we propose an algorithm for solving the problem of detecting the presence of signals produced by an earthquake via analysis of its signature against the existing database of magnetic signals. To achieve this purpose, we construct the magnetic signature of certain earthquakes using the distribution of the energies among blocks, which consist of wavelet packet coefficients.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theories, Applications, and Expectations for Magnetic Anomaly Detection Technology: A Review;IEEE Sensors Journal;2023-08-15

2. Evaluating the performance of different mother wavelet functions for down-sampling of earthquake records;Structures;2023-05

3. Map SPD clamping voltages on to spectral clusters generated by Wavelet transformation;2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA);2021-09-20

4. Comparison of energy presence in IEC and real transient impulses;2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA);2021-09-20

5. Method of Constructing a Nonlinear Approximating Scheme of a Complex Signal: Application Pattern Recognition;Mathematics;2021-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3