Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India

Author:

Swarnkar SomilORCID,Malini Anshu,Tripathi Shivam,Sinha RajivORCID

Abstract

Abstract. High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE) and the sediment delivery ratio (SDR) equations are used to estimate the spatial pattern of soil erosion (SE) and sediment yield (SY) in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha−1 yr−1) with higher values in the upper mountainous region (92 ± 15.2 t ha−1 yr−1) compared to the lower alluvial plains (19.3 ± 4 t ha−1 yr−1). Furthermore, the topographic steepness (LS) and crop practice (CP) factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin – Nanak Sagar Dam (NSD) for the period 1962–2008 and Husepur gauging station (HGS) for 1987–2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2 × 105 t yr−1 and 6.7 ± 1.4 × 106 t yr−1, respectively, and the estimated 90 % interval contains the observed values of 6.4 × 105 t yr−1 and 7.2 × 106 t yr−1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and SY estimates at ungauged basins.

Funder

Ministry of Earth Sciences

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference62 articles.

1. Amore, E., Modica, C., Nearing, M. A., and Santoro, V. C. Scale effect in USLE and WEPP application for soil erosion computation from three Sicilian basins, J. Hydrol., 293, 100–114, 2004.

2. Babu, R., Tejwani, K. G., Agarwal, M. C., and Bhushan, L. S. Distribution of erosion index and iso-erodent map of India, Ind. J. Soil Conservation, 1978.

3. Beven, K. J. and Brazier, R. E. Dealing with uncertainty in erosion model predictions, Handbook of Erosion Modelling, 52–79, 2011.

4. Bhattarai, R. and Dutta, D. Estimation of soil erosion and sediment yield using GIS at catchment scale, Water Resour. Manage., 21, 1635–1647, 2007.

5. Biesemans, J., Van Meirvenne, M., and Gabriels, D.: Extending the RUSLE with the Monte Carlo error propagation technique to predict long-term average off-site sediment accumulation, J. Soil Water Conservat., 55, 35–42, 2000.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3