Author:
Bhend J.,Franke J.,Folini D.,Wild M.,Brönnimann S.
Abstract
Abstract. Data assimilation is a promising approach to obtain climate reconstructions that are both consistent with observations of the past and with our understanding of the physics of the climate system as represented in the climate model used. Here, we investigate the use of Ensemble Square Root Filtering (EnSRF) – a technique used in weather forecasting – for climate reconstructions. We constrain an ensemble of 29 simulations from an atmosphere-only general circulation model (GCM) with 37 pseudo-proxy time series. Assimilating spatially sparse information with low temporal resolution (semi-annual) improves the representation of not only surface quantities such as temperature and precipitation, but also upper-air features such as the intensity of the northern stratospheric polar vortex or the strength of the northern subtropical jet. Given the sparsity of the assimilated information and the limited size of the ensemble used, a localisation procedure is crucial to reduce "overcorrection" of climate variables far away from the assimilated information.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献