A novel approach to climate reconstructions using Ensemble Kalman Filtering

Author:

Bhend J.,Franke J.,Folini D.,Wild M.,Brönnimann S.

Abstract

Abstract. Data assimilation is a promising approach to obtain climate reconstructions that are both consistent with observations of the past and with our understanding of the physics of the climate system as represented in the climate model used. Here, we investigate the use of Ensemble Square Root Filtering (EnSRF) – a technique used in weather forecasting – for climate reconstructions. We constrain an ensemble of 29 simulations from an atmosphere-only general circulation model (GCM) with 37 pseudo-proxy time series. Assimilating spatially sparse information with low temporal resolution (semi-annual) improves the representation of not only surface quantities such as temperature and precipitation, but also upper-air features such as the intensity of the northern stratospheric polar vortex or the strength of the northern subtropical jet. Given the sparsity of the assimilated information and the limited size of the ensemble used, a localisation procedure is crucial to reduce "overcorrection" of climate variables far away from the assimilated information.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3