The origin of noise and magnetic hysteresis in crystalline permalloy ring-core fluxgate sensors

Author:

Narod B. B.ORCID

Abstract

Abstract. 6-81.3 Mo permalloy, developed in the 1960s for use in high performance ring-core fluxgate sensors, remains the state-of-the-art for permalloy-cored fluxgate magnetometers. The magnetic properties of 6-81.3, namely magnetocrystalline and magnetoelastic anisotropies and saturation induction are all optimum in the Fe–Ni–Mo system. In such polycrystalline permalloy fluxgate sensors a single phenomenon may cause both fluxgate noise and magnetic hysteresis, explain Barkhausen jumps, remanence and coercivity, and avoid domain denucleation. The phenomenon, domain wall reconnection, is presented as part of a theoretical model. In the unmagnetized state a coarse-grain high-quality permalloy foil ideally forms stripe domains, which present at the free surface as parallel, uniformly spaced domain walls that cross the entire thickness of the foil. Leakage flux "in" and "out" of alternating domains is a requirement of the random orientation, grain-by-grain, of magnetic easy axes' angles with respect to the foil free surface. Its magnetostatic energy together with domain wall energy determines an energy budget to be minimized. Throughout the magnetization cycle the free surface domain pattern remains essentially unchanged, due to the magnetostatic energy cost such a change would elicit. Thus domain walls are "pinned" to free surfaces. Driven to saturation, domain walls first bulge then reconnect via Barkhausen jumps to form a new domain configuration this author has called "channel domains", that are attached to free surfaces. The approach to saturation now continues as reversible channel domain compression. Driving the permalloy deeper into saturation compresses the channel domains to arbitrarily small thickness, but will not cause them to denucleate. Returning from saturation the channel domain structure will survive through zero H, thus explaining remanence. The Barkhausen jumps being irreversible exothermic events are sources of fluxgate noise, powered by the energy available from domain wall reconnection. A simplified domain energy model can then provide a predictive relation between ring core magnetic properties and fluxgate sensor noise power. Four properties are predicted to affect noise power, two of which, are well known: saturation total magnetic flux density and magnetic anisotropy. The two additional properties are easy axes alignment and foil thickness. Flux density and magnetic anisotropy are primary magnetic properties determined by an alloy's chemistry and crystalline lattice properties. Easy axes alignment and foil thickness are secondary, geometrical properties related to an alloy's polycrystalline fabric and manufacture. Improvements to fluxgate noise performance can in principle be achieved by optimizing any of these four properties in such a way as to minimize magnetostatic energy. Fluxgate signal power is proportional to B–H loop curvature (d2B/dH2). The degree to which Barkhausen jumps coincide with loop curvature is a measure of noise that accompanies fluxgate signal. B–H loops with significant curvature beyond the open hysteresis loop may be used to advantage to acquire fluxgate signal with reduced noise.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The CASSIOPE/e-POP Magnetic Field Instrument (MGF);Space Science Reviews;2014-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3