Spatial heterogeneity in rain-bearing winds, seasonality and rainfall variability in southern Africa's winter rainfall zone

Author:

Conradie Willem StefaanORCID,Wolski Piotr,Hewitson Bruce Charles

Abstract

Abstract. A renewed focus on southern Africa's winter rainfall zone (WRZ) following the Day Zero drought and water crisis has not shed much light on the spatial patterns of its rainfall variability and climatological seasonality. However, such understanding remains essential in studying past and potential future climate changes. Using a dense station network covering the region encompassing the WRZ, we study spatial heterogeneity in rainfall seasonality and temporal variability. These spatial patterns are compared to those of rainfall occurring under each ERA5 synoptic-scale wind direction sector. A well-defined “true” WRZ is identified with strong spatial coherence between temporal variability and seasonality not previously reported. The true WRZ is composed of a core and periphery beyond which lies a transition zone to the surrounding year-round rainfall zone (YRZ) and late summer rainfall zone. In places, this transition is highly complex, including where the YRZ extends much further westward along the southern mountains than has previously been reported. The core receives around 80 % of its rainfall with westerly or north-westerly flow compared to only 30 % in the south-western YRZ incursion, where below-average rainfall occurs on days with (usually pre-frontal) north-westerly winds. This spatial pattern corresponds closely to those of rainfall seasonality and temporal variability. Rainfall time series of the core and surroundings are very weakly correlated (R2<0.1), also in the winter half-year, implying that the YRZ is not simply the superposition of summer and winter rainfall zones. In addition to rain-bearing winds, latitude and annual rain day climatology appear to influence the spatial structure of rainfall variability but have little effect on seasonality. Mean annual rainfall in the true WRZ exhibits little association with the identified patterns of seasonality and rainfall variability despite the driest core WRZ stations being an order of magnitude drier than the wettest stations. This is consistent with the general pattern of near homogeneity within the true WRZ, in contrast to steep and complex spatial change outside it.

Funder

National Research Foundation

Publisher

Copernicus GmbH

Subject

Applied Mathematics,Atmospheric Science,Statistics and Probability,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthesis and Outlook on Future Research and Scientific Education in Southern Africa;Sustainability of Southern African Ecosystems under Global Change;2024

2. The April 2021 Cape Town Wildfire: Has Anthropogenic Climate Change Altered the Likelihood of Extreme Fire Weather?;Bulletin of the American Meteorological Society;2023-01

3. Spatial heterogeneity of 2015–2017 drought intensity in South Africa's winter rainfall zone;Advances in Statistical Climatology, Meteorology and Oceanography;2022-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3