New insights on resource stoichiometry: assessing availability of carbon, nitrogen, and phosphorus to bacterioplankton

Author:

Soares Ana R. A.,Bergström Ann-Kristin,Sponseller Ryan A.,Moberg Joanna M.,Giesler Reiner,Kritzberg Emma S.,Jansson Mats,Berggren Martin

Abstract

Abstract. Boreal lake and river ecosystems receive large quantities of organic nutrients and carbon (C) from their catchments. How bacterioplankton respond to these inputs is not well understood, in part because we base our understanding and predictions on total pools, yet we know little about the stoichiometry of bioavailable elements within organic matter. We designed bioassays with the purpose of exhausting the pools of readily bioavailable dissolved organic carbon (BDOC), bioavailable dissolved nitrogen (BDN), and bioavailable dissolved phosphorus (BDP) as fast as possible. Applying the method in four boreal lakes at base-flow conditions yielded concentrations of bioavailable resources in the range 105–693 µg C L−1 for BDOC (2 % of initial total DOC), 24–288 µg N L−1 for BDN (31 % of initial total dissolved nitrogen), and 0.2–17 µg P L−1 for BDP (49 % of initial total dissolved phosphorus). Thus, relative bioavailability increased from carbon (C) to nitrogen (N) to phosphorus (P). We show that the main fraction of bioavailable nutrients is organic, representing 80 % of BDN and 61 % of BDP. In addition, we demonstrate that total C : N and C : P ratios are as much as 13-fold higher than C : N and C : P ratios for bioavailable resource fractions. Further, by applying additional bioavailability measurements to seven widely distributed rivers, we provide support for a general pattern of relatively high bioavailability of P and N in relation to C. Altogether, our findings underscore the poor availability of C for support of bacterial metabolism in boreal C-rich freshwaters, and suggest that these ecosystems are very sensitive to increased input of bioavailable DOC.

Funder

Svenska Forskningsrådet Formas

Helge Ax:son Johnsons Stiftelse

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3