1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, available at: https://www.tensorflow.org/ (last access: 1 December 2020), 2015. a
2. Andersson, T., Andersson, M., Jacobsson, C., and Nilsson, S.: Thermodynamic
indexes for forecasting thunderstorms in southern sweden, Meteorol. Mag.,
118, 141–146, 1989. a
3. Bacmeister, J. T., Suarez, M. J., and Robertson, F. R.: Rain Reevaporation,
Boundary Layer–Convection Interactions, and Pacific Rainfall Patterns in an
AGCM, J. Atmos. Sci., 63, 3383–3403,
https://doi.org/10.1175/JAS3791.1,
2006. a
4. Caracciolo, C., Prodi, F., Battaglia, A., and Porcu', F.: Analysis of the
moments and parameters of a gamma DSD to infer precipitation properties: A
convective stratiform discrimination algorithm, Atmos. Res., 80, 165–186,
https://doi.org/10.1016/j.atmosres.2005.07.003,
2006. a
5. Cloud and Precipitation Exploration Laboratory (CPEX-LAB): JOYCE-CF, available at: http://cpex-lab.de/cpex-lab/EN/Home/JOYCE-CF/JOYCE-CF_node.html, last access: 18 June 2021. a