Borehole research in New York State can advance utilization of low-enthalpy geothermal energy, management of potential risks, and understanding of deep sedimentary and crystalline geologic systems

Author:

Jordan TeresaORCID,Fulton Patrick,Tester Jefferson,Bruhn David,Asanuma HiroshiORCID,Harms Ulrich,Wang Chaoyi,Schmitt Doug,Vardon Philip J.,Hofmann Hannes,Pasquini Tom,Smith JaredORCID,

Abstract

Abstract. In January 2020, a scientific borehole planning workshop sponsored by the International Continental Scientific Drilling Program was convened at Cornell University in the northeastern United States. Cornell is planning to drill test wells to evaluate the potential to use geothermal heat from depths in the range of 2700–4500 m and rock temperatures of about 60 to 120 ∘C to heat its campus buildings. Cornell encourages the Earth sciences community to envision how these boreholes can also be used to advance high-priority subsurface research questions. Because nearly all scientific boreholes on the continents are targeted to examine iconic situations, there are large gaps in understanding of the “average” intraplate continental crust. Hence, there is uncommon and widely applicable value to boring and investigating a “boring” location. The workshop focused on designing projects to investigate the coupled thermal–chemical–hydrological–mechanical workings of continental crust. Connecting the practical and scientific goals of the boreholes are a set of currently unanswered questions that have a common root: the complex relationships among pore pressure, stress, and strain in a heterogeneous and discontinuous rock mass across conditions spanning from natural to human perturbations and short to long timescales. The need for data and subsurface characterization vital for decision-making around the prospective Cornell geothermal system provides opportunities for experimentation, measurement, and sampling that might lead to major advances in the understanding of hydrogeology, intraplate seismicity, and fluid/chemical cycling. Subsurface samples could also enable regional geological studies and geobiology research. Following the workshop, the U.S. Department of Energy awarded funds for a first exploratory borehole, whose proposed design and research plan rely extensively on the ICDP workshop recommendations.

Publisher

Copernicus GmbH

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Reference67 articles.

1. Al Aswad, J. A.: A Stratigraphic and Petrophysical Study of In-situ Geothermal Reservoir Quality of the Cambro-Ordovician Strata in the Subsurface at Cornell University, Ithaca, New York, MS Thesis, Ithaca, New York, USA, 1–172, 2019.

2. Bailey, D. G. and Lupulescu, M. V.: Spatial, temporal, mineralogical, and compositional variations in Mesozoic kimberlitic magmatism in New York State, Lithos, 212, 298–310, 2015.

3. Bailey, D. G., Lupulescu, M. V., and Chiarenzelli, J. R.: Kimberlites in the Cayuga Lake region of central New York: The Six Mile Creek, Williams Brook, and Taughannock Creek dikes, in: New York Geological Association 89th Annual Meeting Field Trip Guidebook, edited by: Muller, O. H., Alfred University, Alfred, New York, USA, 160–190, 2017.

4. Basu, A. R., Rubury, E., Mehnert, H., and Tatsumoto, M.: Sm-Nd, K-Ar and petrologic study of some kimberlites from eastern United States and their implication for mantle evolution, Contrib. Mineral. Petr., 86, 35–44, 1984.

5. Blondes, M. S., Gans, K. D., Engle, M. A., Kharaka, Y. K., Reidy, M. E., Saraswathula, V., Thordsen, J. J., Rowan, E. L., an<span id="page89"/>d Morrissey, E. A.: US Geological Survey National Produced Waters Geochemical Database v2. 3 (PROVISIONAL), US Geological Survey: US Geological Survey, Eastern Energy Resources Science Center, Reston, VA, USA, available at: https://eerscmap.usgs.gov/pwapp/ (last access: 23 October 2019), 2017.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3