Digital photography for assessing vegetation phenology in two contrasting northern ecosystems

Author:

Linkosalmi Maiju,Aurela MikaORCID,Tuovinen Juha-PekkaORCID,Peltoniemi MikkoORCID,Tanis Cemal M.ORCID,Arslan Ali N.ORCID,Kolari Pasi,Aalto TuulaORCID,Rainne Juuso,Laurila TuomasORCID

Abstract

Abstract. Digital repeat photography has become a widely used tool for assessing the annual course of vegetation phenology of different ecosystems. A greenness measure derived from digital images potentially provides an inexpensive and powerful means to analyze the annual cycle of ecosystem phenology. By using the Green Chromatic Coordinate (GCC), we examined the feasibility of digital repeat photography for assessing the vegetation phenology in two contrasting high-latitude ecosystems. While the seasonal changes in GCC are more obvious for the ecosystem that is dominated by annual plants (open wetland), clear seasonal patterns were also observed for the evergreen ecosystem (coniferous forest). Limited solar radiation restricts the use of images during the night and in wintertime, for which time windows were determined based on images of a grey reference plate. The variability in cloudiness had only a minor effect on GCC, and GCC did not depend on the sun angle and direction either. The GCC of wetland developed in tandem with the daily photosynthetic capacity estimated from the atmosphere-ecosystem flux measurements. At the forest site, the seasonal GCC cycle correlated well with the flux data in 2015 but there were some temporary deviations in 2014. The year-to-year differences were most likely generated by meteorological conditions, especially the differences in temperature. In addition to depicting the seasonal course of ecosystem functioning, GCC was shown to respond to physiological changes on a daily time scale. It seems that our northern sites, with a short and pronounced growing season, suit especially well for the monitoring of phenological variations with digital images.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3