Validation of an AOT product over land at the 0.6 μm channel of the SEVIRI sensor onboard MSG

Author:

Bernard E.,Moulin C.,Ramon D.,Jolivet D.,Riedi J.,Nicolas J. M.

Abstract

Abstract. The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard Meteosat Second Generation (MSG) launched in 2003 by EUMETSAT is dedicated to the Nowcasting applications and Numerical Weather Prediction and to provide information for climate monitoring and research. We use the data in visible and near infrared channels to derive the Aerosol Optical Thickness (AOT) over land. The algorithm is based on the assumption that the Top Of the Atmosphere (TOA) reflectance increases with the aerosol load. This is a reasonable assumption except in case of absorbing aerosols above bright surfaces. We assume that the minimum in a 14-day time series of the TOA reflectance is, once corrected from gaseous scattering and absorption, representative of the surface reflectance. The AOT and the aerosol model (a set of 5 models are used), are retrieved by matching the simulated TOA reflectance with the TOA reflectances measured by SEVIRI in its visible and Near Infra-Red (NIR) spectral bands. The high temporal resolution of the data acquisition by SEVIRI allows to retrieve the AOT every 15 min with a spatial resolution of 3km at sub-satellite point, over the whole SEVIRI disk which covers Europe, Africa and part of South America. The resulting AOT, a Level 2 product at the same temporal and spatial resolution than SEVIRI, is presented and evaluated in this paper. The AOT has been validated using ground based measurements from AERONET, a sun-photometer network, focusing over Europe for 3 months in 2006. The SEVIRI estimates correlate well with the AERONET measurements, r = 0.64, with a slight underestimate, bias = −0.017. The sources of errors are mainly the cloud contamination and the bad estimation of the surface reflectance. The temporal evolutions exhibited by both dataset show very good agreement which allows to conclude that the AOT Level 2 product from SEVIRI can be used to quantify the aerosol content and to monitor its daily evolution with a high temporal frequency. The comparison with daily maps of MODIS AOT level 3 product shows qualitative good agreements in the retrieved geographic patterns of AOT. Given the high spatial and temporal resolutions obtained with this approach, our results have clear potential for applications ranging from air quality monitoring to climate studies.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3