Correcting orbital drift signal in the time series of AVHRR derived convective cloud fraction using rotated empirical orthogonal function

Author:

Devasthale A.,Karlsson K.,Quaas J.,Grassl H.

Abstract

Abstract. The AVHRRs instruments onboard the series of NOAA satellites offer the longest available meteorological data records from space. These satellites have drifted in orbit resulting in shifts in the local time sampling during the life span of sensors onboard. Depending on the amplitude of a diurnal cycle of the geophysical parameters derived, orbital drift may cause spurious trends in their time series. We investigate tropical deep convective clouds, which show pronounced diurnal cycle amplitude, to bracket an upper bound of the impact of orbital drift on their time series. We carry out a rotated empirical orthogonal function analysis and show that the REOFs are useful in delineating orbital drift signal and, more importantly, in correcting this signal in the time series of convective cloud amount. These results will help facilitate the derivation of homogenized data series of cloud amount from NOAA satellite sensors and ultimately analyzing trends from them. However, we suggest detailed comparison of various methods and their rigorous testing before applying final orbital drift corrections.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3