Diel peroxy radicals in a semi-industrial coastal area: nighttime formation of free radicals

Author:

Andrés-Hernández M. D.,Kartal D.,Crowley J. N.ORCID,Sinha V.ORCID,Regelin E.,Martínez-Harder M.,Nenakhov V.,Williams J.,Harder H.ORCID,Bozem H.ORCID,Song W.,Thieser J.,Tang M. J.,Hosaynali Beigi Z.,Burrows J. P.ORCID

Abstract

Abstract. Peroxy radicals were measured by a PeRCA (Peroxy Radical Chemical Amplifier) instrument in the boundary layer during the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) campaign at a coastal, forested site influenced by urban-industrial emissions in southern Spain in late autumn. Total peroxy radicals (RO2* = HO2 + ΣRO2) generally showed a daylight maximum between 10 and 50 pptv at 13:00 UTC, with an average of 18 pptv over the 15 days of measurements. Emissions from the industrial area of Huelva often impacted the measurement site at night during the campaign. The processing of significant levels of anthropogenic organics leads to an intense nocturnal radical chemistry accompanied by formation of organic peroxy radicals at comparable levels to those of summer photochemical conditions with peak events up to 60–80 pptv. The RO2 production initiated by reactions of NO3 with organic trace gases was estimated to be significant, but not sufficient to account for the concentrations of RO2* observed in air masses carrying high pollutant loading. The nocturnal production of peroxy radicals in those periods seems therefore to be dominated by ozonolysis of volatile organic compounds, in particular alkenes of industrial petrochemical origin. RO2* diurnal variations were consistent with HO2 measurements available at the site. HO2/RO2* ratios generally varied between 0.3 and 0.6, though on some occasions this ratio was likely to have been affected by instrumental artifacts (overestimated HO2) associated with high RO2 loads.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3